凸二次约束二次半定规划的Newton-CG增广拉格朗日算法

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:myhome1202
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文中,我们利用了Newton-CG的增广拉格朗日方法求解凸二次约束二次半定规划(convex quadratically constrained quadratic semidefinite programs(CQCQSDP)).为了分析该算法的局部收敛性,我们给出了T-1G在原点的Lipschitz连续性以及等价条件;得到了凸二次约束二次半定规划的Robinson约束规范、强二阶充分条件、约束非退化准则的显式表达式.对于内问题,证明了目标函数的广义Hessian矩阵的正定性等价于原问题的Wolfe对偶的约束非退化性质,这个性质确保了使用非精确的半光滑Newton-CG方法求解内问题是有效的,并且使用了半光滑的Newton-CG方法求解内问题,分析了此算法的局部超线性收敛性.数值试验表明此算法是求解该问题比较好的算法,特别是对于大规模问题求解非常有效。
其他文献
目前,随着油气工作难度的加大,测井资料的处理及解释对计算机软、硬件的依赖程度越来越大,面对大量的采集数据,对数据处理提出了新的挑战。聚类分析在数据分析和数据可视化研究方
多元多项式环上的多元多项式矩阵是代数学中的重要内容,而大多数工程问题都可以转化成多元多项式矩阵来进行求解,但多元多项式矩阵的求解是多项式矩阵理论中非常困难的。目前已
随着计算机软件和硬件技术的不断提高和发展,越来越多的智能家居设备和手持终端设备得到了广泛的普及。一方面这些设备让我们的生活变得更加便捷,然而另一方面设备存在的安全问