论文部分内容阅读
从Banach压缩映象原理提出到现在,不动点理论已成为了一个比较完善的系统。不动点理论可解决变分不等式及其线性、非线性、微分、积分等各类方程中,解的存在性、唯一性及其近似解的迭代逼近等问题,并有着广泛的实际应用。现人们主要通过推广空间、映象和迭代序列,削弱对参数的限定条件或加强结论来研究不动点的迭代逼近问题。本文将在已知的研究成果上,分别讨论在凸度量空间和A星形度量空间中有限簇广义渐近拟非扩张型映象公共不动点的迭代逼近问题。 本研究分为三个部分:第一章介绍了研究的意义、不动点理论在国内外研究现状和主要的研究内容这三个方面。第二章在凸度量空间中,将渐近拟非扩张映象中的相关结论推广到广义渐近拟非扩张型映象。在对参数的特定限制条件下,给出并证明了k步迭代序列强收敛于k个广义渐近拟非扩张型映象的公共不动点的充要条件;进一步优化迭代序列{xn}的算法,构造k步迭代序列,并讨论2k个广义渐近拟非扩张型映象的公共不动点的迭代逼近;新定义一个一步迭代序列,给出并证明该迭代序列强收敛于k个广义渐近拟非扩张型映象的公共不动点的充要条件。第三章在q-星形度量空间的基础上,引入了新的A-星形度量空间,继续讨论有限个广义渐近拟非扩张型映象公共不动点的迭代逼近问题,并给出强收敛的充要条件。