超冷原子高阶分波磁诱导Feshbach共振及其电场调控

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:yutou1888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超冷原子气体具有很强的量子操控性,是研究量子效应的理想体系。在超冷双原子散射中,利用磁场可以改变不同散射通道之间的能量差。当闭通道束缚态和入射通道散射态的能量接近时,将发生Feshbach共振。利用外场可以调节在共振附近原子之间的相互作用。由于离心势垒的影响,高阶分波磁诱导Feshbach共振较窄,较难观测。本学位论文采用量子亏损理论(quantum-defect theory)研究了电场对超冷碱金属异核双原子高阶分波磁诱导Feshbach共振的调控作用;采用多通道耦合理论方法(multi-channel close-coupling method)研究了高阶分波磁诱导Feshbach共振随着碰撞能的变化规律。我们拓展了量子亏损理论,使其用于研究外电场和磁场调控的超冷碱金属异核双原子高阶分波散射问题。以6Li-40K散射体系为例,在短程区域采用LogD矩阵演化方法构建了包含电场调控的单重态和三重态量子亏损矩阵y(0)和y(1)。选取截断的-C6/R6-C8/R8-C10/R10势为参考势,计算了s波、p波和d波散射的量子亏损参数,研究了电场对磁诱导Feshbach共振位置和宽度的调控。研究结果表明电场与碰撞复合物电偶极矩的相互作用会改变磁诱导Feshbach共振位置和宽度,且电场越强,调控作用越明显。另外,电场可以诱导相邻分波散射发生耦合,产生新的共振,即电场诱导Feshbach共振。当电场方向与磁场方向不平行时,会发生共振劈裂现象。采用拓展的量子亏损理论计算的结果与采用多通道耦合理论方法计算的结果吻合,但计算量明显减少。我们采用多通道耦合理论方法研究了高阶分波磁诱导Feshbach共振在较大碰撞能范围内的变化规律。以85Rb-87Rb散射体系为例,计算了总的弹性和非弹性散射截面随磁场和碰撞能的变化,发现共振峰随碰撞能的增大而减小。在给定磁场强度下,散射截面随碰撞能增大从共振峰的最大值减小到最小值,我们称之为“共振尾巴”(resonance tail)。定量计算了高阶分波磁诱导Feshbach共振在阈值处的自能值,用于定量描述共振附近开通道与闭通道之间的耦合。对于阈值处自能绝对值较小的共振,其共振尾巴较长。长共振尾巴意味着在较大能量范围内可以观测到该共振。自能和共振尾巴的这种关系在热平均速率常数中也存在。自旋-自旋相互作用能够使束缚态发生劈裂,导致散射截面中出现多重共振劈裂结构。但在热平均速率常数中,由于热平均效应,很难观测到共振劈裂现象。本文的研究工作为深入理解超冷原子气体高阶分波量子散射性质和为实验研究者外场调控高阶分波Feshbach共振提供了理论参考。
其他文献
畜禽的行为与其健康状况、生活环境密切相关,通过行为分析评估福利状况是一种简单、容易理解的常用方法。精准养殖的核心是个体信息和行为的智能监测与自动分析,通过先进的信息技术对鸡只进行持续、自动的监测是精准养鸡亟待解决的问题。本文以舍饲散养鸡只行为的自动化监测为目标,对基于深度学习的行为识别方法、多目标跟踪方法以及鸡只行为及整体状态的异常检测等关键问题展开研究。(1)研究了舍饲散养模式下鸡舍内鸡只的行为
锂离子电池是一种借助于锂离子来回的嵌入/脱出来实现能量的转换与存储装置,具有能量密度大、循环寿命稳定等特点,已广泛应用于众多能源存储领域。随着便捷式电子设备和电动汽车的快速迭代,研发具有更高能量密度、功率密度以及续航寿命的新一代锂离子电池已成为必然趋势。在传统的锂离子电池中,负极材料通常为商业的石墨碳,而其较低的理论容量,俨然不足以满足新一代储能设备对储锂性能的高要求。近年来,基于转换反应的铁基氧
装配式剪力墙结构是建筑工业化发展中一种重要的结构体系。在保证装配式结构施工效率、保障预制构件连接性能安全可靠的前提下,提高结构整体的抗震能力、降低结构主体的塑性损伤的研究具有重要意义。本文基于装配式剪力墙结构的变形特点和损伤控制设计思想,研发了能够提高阻尼材料耗能效率的新型摩擦阻尼装置和粘弹性阻尼装置。从力学性能入手,通过理论、试验和数值模拟方法对新型阻尼装置展开了深入研究。进一步提出了采用阻尼装
近岸波浪传播规律及其时空分布特性的研究对近海生产作业和近岸工程设计至关重要。实际的近岸地形较复杂,波浪是空间非均匀的多向不规则波,而且传至近岸的波浪往往因为水深变浅而产生破碎。因此建立可以有效模拟近岸多向波浪破碎和考虑空间非均匀波浪入射的数值计算模型,对于开展近岸波浪特性以及波浪对于建筑物作用的研究具有重要的意义。Boussinesq方程是描述近岸波浪传播运动较好的数学模型,但是由于方程基于势流假
生物炭是生物质在缺氧或厌氧条件下热解形成的一种含碳物质,被广泛用于大气碳汇减排、提高土壤肥力及土壤污染修复等领域。生物炭含有丰富的含氧活性基团,不仅可能影响功能微生物对各类污染物的还原过程,也可能参与铁矿物的生物还原并形成碳/铁复合物。另一方面,作为微生物修复技术的核心,功能微生物在土壤含水层中的运移、截留与分布情况直接影响修复效果,近年来引起广泛关注。目前,利用生物炭介导促进微生物直接还原污染物
我国人多水少,水资源时空分布不均,社会经济可持续发展受区域干旱缺水的制约,且在气候变化和人类活动的双重驱动下,极端干旱事件趋多趋强,供需矛盾愈发突出。供水系统在干旱事件中发生供水破坏的频次、破坏的深度,以及恢复速度受到广泛关注,传统的供水保证率指标(可靠性)仅反映了破坏频次,无法全面系统体现极端缺水事件对社会经济的影响,需要增加回弹性、脆弱性评价指标,以完整地表征系统属性。另一方面,系统缺水与多种
海洋空间的有效利用和海洋资源的合理开发离不开海上平台等构筑物的建设,而海洋构筑物的正常工作取决于海底锚固系统的安全和稳定。作为桩、锚基础或海底管线的载体,海洋软黏土具有不同于陆上软黏土的工程性质,并且由于海洋环境变化多端,海床土的受力条件复杂多变,所以深入研究海床土,尤其是深海软黏土的工程特性,以及在受力作用下发生变化的内在机制有重要的工程价值和科学意义。本文以我国南海原状深海软黏土为研究对象,采
后向台阶流动是一种具有代表性的分离流动,数十年来始终是湍流研究领域中的重点课题。迄今为止的研究揭示了流场中很多基础特性,然而仍有部分重要问题没有得到解决。在湍流结构的三维化过程及剪切层低频摆动现象的成因等问题上仍存在研究争议。本论文对雷诺数992≤Re≤21688条件下高度为H的后向台阶流场,在低速循环水洞及下吹式风洞两类平台中进行了实验研究。在实验中应用了多重曝光烟线流动显示、时间解析的二维及三
沸石分子筛是一种由[SiO4]和[AlO4]-构成的无机微孔晶体,因为沸石分子筛化学稳定性高、比表面积大、孔道结构有序,而在石油化工、离子交换与吸附、气体分离方面有着重要应用。传统的沸石分子筛的合成方法是水热合成法,并且需要在合成体系中加入有机物作为模板剂导向目标沸石的形成。这种合成方法会造成环境污染、资源浪费、合成成本增加等一系列的问题,不符合绿色化学的基本要求。因此,可以使用晶种作为结构导向剂
张紧系泊的振荡浮子式海洋结构物在海洋工程中被广泛应用,尤其是在波浪能的开发和应用中。波浪作用下这类结构会出现显著的非线性响应现象,针对非线性响应现象的产生机理的研究,不论是对结构的安全性还是将大幅运动转化为可利用的资源,都具有重要的意义。基于势流理论,本文采用高阶边界元方法并结合物面非线性时域理论,建立波浪与三维浮体相互作用的数值求解模型,研究浮体的大幅运动响应问题。该模型满足线性自由水面条件和瞬