【摘 要】
:
铁坏死是近年提出的一种新型细胞死亡方式,为了系统地研究铁坏死的机制,课题组进行了RNAi的基因组文库的筛选发现PKC是铁坏死的正向性调节因子。蛋白激酶C家族的经典同工酶包括PKCα,PKCβI,PKCβII和PKCγ。本文首在HT1080细胞,MEF小鼠胚胎成纤维细胞和MDA-MB-231乳腺癌细胞发现PKC抑制剂能够比较明显地抑制铁坏死作用。随后主要应用sh RNA这种技术手段在这三种细胞系中对
论文部分内容阅读
铁坏死是近年提出的一种新型细胞死亡方式,为了系统地研究铁坏死的机制,课题组进行了RNAi的基因组文库的筛选发现PKC是铁坏死的正向性调节因子。蛋白激酶C家族的经典同工酶包括PKCα,PKCβI,PKCβII和PKCγ。本文首在HT1080细胞,MEF小鼠胚胎成纤维细胞和MDA-MB-231乳腺癌细胞发现PKC抑制剂能够比较明显地抑制铁坏死作用。随后主要应用sh RNA这种技术手段在这三种细胞系中对于PKCβ进行敲低,在PKCβII敲低的细胞系中铁坏死有明显的延迟或抑制作用。为了进一步证实PKC在铁坏死中的特异性,我分别在MDA-MB-231细胞中过表达了PKCα,PKCβI,PKCβII和PKCγ的突变失活型质粒,发现只有PKCβI和PKCβII表达蛋白的缺失能够抑制铁坏死而PKCα和PKCγ蛋白的缺失并不能起到抑制作用。当在PKCβ敲低的MDA-MB-231乳腺癌细胞中进一步恢复PKCβ表达后,细胞重新对铁坏死变得敏感。总而言之,该课题揭示了PKC蛋白激酶是铁坏死重要的正向性调节因子。接下来会进行免疫共沉淀实验检测下游靶标分子。
其他文献
随着科技的发展,热固性材料的二阶段固化作为顺序发生的分阶段固化技术,具备结构个性化设计与性能再增强的优势,有望代替传统材料应用于空间展开结构等复杂场景。然而目前二阶段固化存在引发条件苛刻、一阶段材料贮存稳定性差和分阶段固化产物性能差异小等缺点,限制了进一步应用的潜力。基于此,本课题以四官能硫醇、二官能丙烯酸酯和六官能丙烯酸酯为单体,通过匹配合适的一二阶段反应助剂与树脂单体的非化学计量比设计,制备出
随着我国经济发展与城市化水平的日益提高,专业市场作为商业类型的一种,也如雨后春笋般遍地开花。目前,国内对专业市场的研究大多停留在南方地区,且为概念性理论或浅谈,涉及未深。至于我国严寒地区,因气候特点、地理位置、产业形态等多方面因素影响,专业市场的发展更是饱受制约,相关的指导性研究成果也处于真空状态。因此,为弥补严寒地区大型专业市场建筑设计领域的研究空白,结合我国其它地区的已有成果,因地制宜,推出适
碳纤维增强高分子复合材料(CFRP)具有力学性能优异、耐腐蚀、自重轻、比强度高等特点,在土木工程领域具有巨大的应用潜力。聚氨酯是一种具有高强度、高韧性、高耐久性、高粘结性能的高分子树脂,是作为CFRP基体的良好材料。目前,聚氨酯基CFRP材料在土木工程中应用较少,亟待开展疲劳性能研究。本文通过高温加速老化方法,研究了碳纤维增强聚氨酯基拉挤板材的弯曲疲劳性能以及水、海水、碱环境高温老化对弯曲疲劳性能
随着经济的快速发展,马铃薯加工产业也即将迈入新的发展阶段。但是在马铃薯淀粉产业以及深度加工产业中,马铃薯薯渣汁水等副产物已经成为限制此类加工产业快速发展的障碍和瓶颈,最主要原因就是马铃薯薯渣内含有一些难以直接利用的物质,直接加工利用成本太高,并且汁水中含有大量微生物,若不经过废水处理工艺就排放会造成要种的环境污染。本课题利用出芽短梗霉将马铃薯淀粉加工副产物发酵转化为普鲁兰粗多糖,微生物细胞蛋白等高
功能梯度薄膜具有超精细、微型、高致密性等优质特点,目前功能梯度薄膜在航天、医疗等领域都有着广泛的应用,其制备方法至关重要。当下功能梯度薄膜的制造方法主要包括物理气相沉积、3D打印等增材制造技术。以上技术存在种种缺陷,主要包括:材料选择范围局限、只能实现单方向材料梯度、成品构件偏大、工艺重复性差以及成品存在材料疏松多孔的现象等。针对上述问题提出了一种新型制备功能梯度薄膜的方法——径向梯度薄膜制备方法
冻融破坏一直是水泥基材料重要的耐久性问题之一,理解冻融破坏的机理并提出对应的防治措施是科学界与工程界密切关注的焦点。目前,学术界对冻融破坏的探究大多停留在剥落量、动弹模、强度以及冻融损伤后材料孔隙结构劣化的观测,缺少对冻融过程中水泥基材料内部孔结构演化的认识。本文利用低场磁共振技术(LF-NMR)监测了冻融循环过程中水泥净浆内部孔溶液的相变过程,分析了正负温交替变化时孔结构的演变过程。同时配合使用
随着经济的发展,我国跨海大桥的建设也进入了全新的阶段,跨海大桥的数量和规模都在不断扩增,导致了船桥碰撞的风险增加。相较于通航孔区桥墩,非通航孔区段桥墩的防撞设计值较低,抵御船舶冲击能力差,而桥墩的破坏会严重影响桥面交通通行安全,甚至造成人员伤亡。本文对某跨海超长大桥的非通航孔桥墩开展船撞数值模拟,提出一种新型的气囊防撞装置,分析气囊防撞装置对桥墩的保护作用。主要研究内容如下:(1)以某跨海超长大桥
与普通钢材相比,高强钢强度显著提高,并且在建筑空间,结构安全以及环境友好等方面具有显著优势。凭借诸多优点,高强钢越来越多地应用于众多大型结构工程中,如鸟巢、水立方、中央电视台总部大楼等。由于钢材的物理化学特性,使其极易与腐蚀介质发生电化学腐蚀反应,从而导致构件截面尺寸削弱。腐蚀分为均匀腐蚀和不均匀腐蚀,目前的研究中主要考虑均匀腐蚀的影响,但是不均匀腐蚀会导致截面出现集中削弱,相对于均匀腐蚀来说对结
壳聚糖基水凝胶质地及可能功能与机体生物组织具有高度相似性,有望承载与支持体内细胞及组织再生,有望作为机体内生物医用功能高分子材料,现代生物化工技术对新型功能化水凝胶的研发能够有效应对与解决当前力学强度、动态自恢复需求等复合凝胶急待解决的实际问题。本课题研究联合应用多样各异理化优势桥连交联手段,采用协同效应理念设计,实践特征优异性能成胶因子模块与天然高分子集成方式,分别设计动态可控、静态稳定多桥联用
建筑火灾严重危害人类的生命财产安全,了解混凝土结构的抗火性能对抗火设计和灾后修复具有重要意义。本文主要研究C30-C80混凝土和RPC高温下和高温后力学性能变化规律,借助Origin软件整合对混凝土力学性能指标进行连续化处理,建立了强度等级、温度与折减系数拟合模型。高温下抗压强度分析表明:混凝土高温下抗压强度随温度升高先升高后下降,不同强度等级混凝土高温下抗压强度具有相似的变化趋势,即以300℃为