Ni、Mn对Cu-Ni-Mn-P合金组织性能影响研究

来源 :江西理工大学 | 被引量 : 0次 | 上传用户:clys1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Cu-Ni-Mn-P合金作为一种新型的时效型四元铜合金,具有高强度、高弹性等优异性能,被广泛应用于精密仪表内的弹性元件以及各类继电器用电弹簧,接触弹簧,各类插拔件、膜片、膜盒和弹簧管等。目前对于Cu-Ni-Mn-P合金的研究很少,主要集中在析出相的种类和结构等方面。然而,对于合金中所加入的Ni、Mn元素含量对合金组织性能的影响和作用还没有全面和系统的研究,这就限制了合金的进一步开发和使用。本文在Cu-Ni-Mn-P合金中以原子比Ni:Mn:P=1:1:1(NMP111合金)为基础,加入相同原子量的Ni、Mn元素熔炼制备成原子比Ni:Mn:P=2:1:1(NMP211合金)和Ni:Mn:P=1:2:1(NMP121合金)。通过“铸造—热轧—固溶—时效”和“铸造—热轧—固溶—冷轧—时效”工艺,利用现代分析检测技术来表征合金在铸态、热轧态、固溶态和时效态的硬度、导电率和微观组织的变化,再进一步研究分析Ni、Mn元素的添加对合金组织性能的影响规律和作用机理。研究了三组合金的高温软化行为,分析了Ni、Mn元素对合金高温软化行为的影响规律。研究结果如下:(1)在“铸造—热轧—固溶—时效”工艺中,Ni、Mn的加入能够有效的减少合金中的枝晶,改善合金的铸态组织。在500℃下时效三组合金都表现出明显的时效硬化效果,其中相较于NMP211合金而言NMP121合金具有更优的峰值硬度,但导电率显著恶化。通过TEM观察可知,三组合金的析出相均为单斜晶系的Ni P相。通过这三组合金电阻率的计算发现,对合金导电率损害最大的是残留在基体内的溶质元素。发现Mn元素能够从基体扩散至析出相内,这能够减少合金导电率的损害。通过对这三组合金强度的计算发现,对合金屈服强度贡献最大的是析出相的析出强化作用。(2)在“铸造—热轧—固溶—冷轧—时效”工艺中,合金经过70%的冷变形后,在450℃时效过程中NMP211合金的峰值硬度要高于NMP121合金,达到228HV。通过这三种合金的峰时效EBSD数据分析可知,Ni元素的添加能够抑制合金在峰时效再结晶行为的发生,提高NMP211合金的抗软化作用,使其有更高的峰值硬度。(3)通过这三组冷轧后的峰时效态合金进行高温软化试验可知,NMP111合金的软化温度为505℃。Mn元素的添加可提高NMP121合金的软化温度,达到530℃。发现NMP121合金抗软化温度的提高与Mn元素的添加抑制合金的再结晶晶粒的形核长大以及析出相的粗化有关。
其他文献
本文简要介绍了弹性作息时间管理目前在幼儿园的运行情况,强调了弹性作息时间管理的重要性,继而提出了弹性化时间管理的具体方法,以顺应园本教育需求,助力幼儿健康成长。
矿山由露天转入地下开采后,露天终了边坡、地下采场围岩及上覆岩岩体的应力场、位移场及变形破坏场构成一个复杂多变的动态演化系统。本文以晋宁磷矿2号坑为工程背景,通过现场调研、相似物理模型试验、数值模拟及理论分析相结合的方法,引入边坡采动效应因子K,建立地下采场上覆岩力学分析模型及裂隙演化形态方程,并提出采动影响下力学失稳判据,阐明露天边坡坡角对地下采场围岩、覆岩的影响效应及动态失稳机理,主要研究结果如
铝合金由于其密度小、比强度高和比刚度好而广泛应用于航空航天、交通运输以及建筑材料等领域。然而多变、恶劣的服役环境,使铝合金的表面易被破坏,如裂纹、磨损和腐蚀等,致使铝合金的性能恶化,这将限制其使用范围。因此需要提升7B85铝合金的抗腐蚀性能和力学性能。本论文研究了超声表面滚压处理对7B85铝合金组织结构和力学性能的影响以及在3.5 wt.%Na Cl溶液中的抗腐蚀性能变化。主要研究内容和结果如下:
Cu-Cr系合金因具有高强度与高导电性,而被广泛应用于电子电器、集成电路、轨道交通以及航空航天等众多领域。现代工业技术日益进步,对高强高导Cu-Cr合金的综合性能提出了更高要求,因此如何进一步改善Cu-Cr合金的强度与导电性能成为当前的研究热点内容。作为时效强化型合金,Cu-Cr系合金在时效过程中能够产生细小的Cr相粒子,从而提高合金的强度。Cr相粒子的形貌、结构、尺寸等特征因素直接影响到CuCr
硬质合金的生产需要消耗大量的钴资源,然而,我国却是一个Co资源严重缺乏的国家,每年需要大量进口Co原料来维持我国Co产品及Co相关领域的发展。同时,Co作为一种战略资源,价格昂贵且容易大幅波动,这增加了我国Co行业发展的风险。因此,减少Co在硬质合金中的使用对缓解我国Co资源的依赖和Co行业的发展有重要意义。鉴于此,本文目的是利用其它元素部分取代Co作为粘结相,且不降低硬质合金的综合性能。本工作选
为实现钢的超高强高韧一般添加较贵重元素Co,这极大的增加了钢的成本。同时由于材料在使用过程中易受到强动载荷作用,如何实现低成本、超高强高韧并具备良好的动态性能已成为新钢种开发的关键性问题。本文以自主设计的一种低合金超高强度DT506钢为研究对象,该钢主要特点是无Co低Ni。对DT506钢进行连续冷却转变试验、热处理试验以及分离式霍普金森压杆试验,系统分析了其过冷奥氏体连续冷却转变规律、热处理工艺对
学位
电接触材料是电流的传导和转换过程最重要的材料,由于这类材料要求的技术含量非常之高,所以之前所用的电接触材料都是非常昂贵的金属Au、Ag、Pt等的合金及其复合材料,这些材料不仅造价很高,而且使用时间较短。石墨烯的发现使这一问题有了很好的解决方案,优异的性能使得石墨烯铜基复合材料能够成为新一代的电接触材料变成了可能。界面是复合材料中的增强相与基体联系的纽带,也是增强相发挥有效作用的桥梁,界面的结合性质
Sn–58Bi合金因其具有低熔点,较好的润湿性能和抗蠕变性能,是低温无铅钎焊的理想材料。然而由于Bi呈硬脆性,在Bi含量较高的情况下,Sn–Bi系焊料合金塑性较差,使Sn-58Bi焊丝的制备相当困难,而抗热疲劳能力不足的问题,也引起人们对焊点可靠性的担忧。本文采用自主设计的下引连续铸造方法,制备直径为8 mm的Sn–(58–x)Bi–x Cu/P/Ni合金杆材,通过微合金化改善Sn–58Bi焊丝的
Cu-Ni-Sn合金是一种典型的调幅分解强化型合金,因其具有高的强度和高的弹性,且在耐磨性、导电导热性和高温使用稳定性等多方面表现优异,被广泛应用于电子信息工业、机械制造及精密仪器仪表等领域。目前,国内外研究学者为提高Cu-Ni-Sn合金性能和明晰其相变过程及相变机理作了大量的试验研究,但少有学者在Ni/Sn含量变化对Cu-Ni-Sn合金时效过程的热力学与动力学的影响方面作深入探究。基于上述存在的