论文部分内容阅读
以锯缘青蟹(Scylla serrata)内表皮为材料,经过含0.2 mol/L NaCl的10 mmol/LTris-HCl(pH 7.5)缓冲液匀浆抽提处理,硫酸铵分级盐析纯化,获得粗酶。粗酶再经过SephadexG-100凝胶层析,DEAE-Cellulose离子交换柱层析,Phenyl Sepharose柱层析,及ConA Sepharose柱层析,获得比活为668.90 U/mg的聚丙烯酰胺凝胶电泳单一纯N-乙酰-β-D-氨基葡萄糖苷酶(N-Acetyl-β-D-glucosaminidase或NAGase,EC 3.2.1.52)制剂。通过Sephacryl-S 200凝胶过滤柱层析法测定该酶的分子量约为74.59 kD。该酶为糖蛋白。进一步对锯缘青蟹内表皮NAGase进行研究。化学修饰法研究表明:组氨酸的咪唑基、色氨酸的吲哚基和酸性氨基酸的侧链羧基是该酶的活性功能基团,而二硫键、赖氨酸的ε-氨基和精氨酸胍基不是该酶所必需的。分别选用水体污染物(金属离子和有机溶剂)、饲料成分(氨基酸和糖)及抗菌类药物为效应物,探讨这些物质对内表皮NAGase活力的影响。1.金属离子对酶活力的影响:结果表明Mg2+对酶活力几乎没有影响;Co2+和Mn2+分别在1.0-10.0 mmol/L和0.5-20.0 mmol/L浓度范围对酶有轻微的激活作用;Al3+对酶有一定的抑制作用,当其浓度为0.54 mmol/L时,可抑制44.4%的活力;而Pb+、Cu2+和Zn2+对酶具有强烈的抑制作用,其半抑制浓度(IC50)分别为:0.4、0.05和0.04mmol/L。2.有机溶剂对酶活力的影响:结果表明甲醇、乙醇、丙醇、乙二醇、丙二醇、丙三醇、丙酮、甲醛、二甲亚砜、二氧六环及二甲基甲酰胺等对酶均有较强的抑制作用,其半抑制浓度(IC50)分别为:3.7、2.3、1.15、2.4、2、2.3、0.80、1.15、0.68、0.88和0.8mol/L。3.氨基酸对酶活力的影响:结果表明除L-Lys具有明显的抑制作用,L-His和L-Asp具有轻微的抑制作用外,其余的几种氨基酸对该酶均无明显的影响。导致该酶活力丧失一半的L-Lys浓度(IC50)为11 mmol/L。4.糖对酶活力的影响:结果表明当鼠李糖(rha)的浓度达0.2 mol/L,可激活酶活力约15%;0.8 mol/L的果糖(fru)、蔗糖(suc)、葡萄糖(glvu)和甘露糖(man)分别使酶的活力下降47.61%、57.54%、85.70%和90.50%;0.6 mol/L的阿拉伯糖(ara)可抑制酶41.62%的活力;0.09 mol/L的葡萄糖醛酸(glcUA)可使酶活力基本丧失;0.3 mol/L的半乳糖(gal)可抑制酶活力37.71%;而80 mmol/L的NAG可使酶丧失83%的活力。5.抗菌类药物对酶活力的影响:结果表明青霉素钾、卡那霉素和链霉素对酶活力基本没有影响;1.0-10.0 mg/ml的庆大霉素对酶有轻微的激活作用;而恩诺沙星对酶有强烈的抑制作用,使酶活力丧失一半的浓度(IC50)为2.9 mg/ml。分别以锯缘青蟹的内表皮和肝胰脏为材料,通过匀浆、离心,获chtitnase和NAGase粗酶液。通过对不同生长期锯缘青蟹chitinase和NAGase的比较研究,结果显示不同生长期锯缘青蟹内表皮的chitinase和NAGase的比活力变化趋势基本一致:比活力在第1期最高,然后依次递减,第5期达到最低,此后维持在一稳定的水平。而肝胰脏chitinase和NAGase的比活力变化趋势虽然基本一致,但并没有一定的变化规律。内表皮和肝胰脏的NAGase最适pH都在5.6-5.8,最适温度分别为42℃和40±2℃,pH稳定性分别是5.0-10.0和5.0-9.0。温度稳定性方面的研究表明内表皮NAGase在大于45℃的条件下活力逐渐丧失,肝胰腺NAGase在大于42℃。的条件下活力开始降低。通过对不同季节锯缘青蟹chitinase和NAGase的比较研究,结果表明:锯缘青蟹内表皮chitinase和NAGase活力表现一致的季节性变化趋势,活力较高的月份集中在10-12月;一年当中,3月的活力较低,此后活力逐渐升高,直至11月,活力达到最高,然后又逐渐减小。不同季节肝胰脏chitinase和NAGase的活力变化规律与与内表皮的相似。不同季节NAGase的基本酶学性质较稳定,内表皮和肝胰腺的NAGase最适pH都在5.6-5.8,最适温度分别为42℃和40±2℃,pH稳定性分别是5.0-10.0和5.0-9.0。温度稳定性方面的研究表明内表皮NAGase在大于45℃的条件下活力逐渐丧失,肝胰腺NAGase在大于42℃。的条件下活力开始降低。