【摘 要】
:
灾害性空间环境事件的发生,可能会威胁到航天器在轨运行安全,影响通讯导航精度,甚至会影响地面电力系统和石油管道。全日面太阳望远镜和日冕仪可以从全局视角监测太阳爆发活动及其传播过程,对空间环境预报和太阳物理研究都具有重要的意义。平场用于描述整个望远镜系统的不均匀性,是科学数据处理的必要步骤,改正效果的好坏决定了后续科学数据的精度,对数据产品质量至关重要。目前太阳望远镜平场改正方法存在计算量大、算法复杂
【机 构】
:
中国科学院大学(中国科学院国家空间科学中心)
【出 处】
:
中国科学院大学(中国科学院国家空间科学中心)
论文部分内容阅读
灾害性空间环境事件的发生,可能会威胁到航天器在轨运行安全,影响通讯导航精度,甚至会影响地面电力系统和石油管道。全日面太阳望远镜和日冕仪可以从全局视角监测太阳爆发活动及其传播过程,对空间环境预报和太阳物理研究都具有重要的意义。平场用于描述整个望远镜系统的不均匀性,是科学数据处理的必要步骤,改正效果的好坏决定了后续科学数据的精度,对数据产品质量至关重要。目前太阳望远镜平场改正方法存在计算量大、算法复杂、受天气和时间制约等问题。因此,本文围绕这一问题,基于漫射体材料开展了相关研究工作,探索了一套新的太阳望远镜平场测量和改正方法。漫射体可以将入射的非均匀太阳光扩散成特定已知强度分布的面光源,为全日面太阳望远镜和日冕仪平场测量提供了新的技术途径。本文在国内率先开展了基于漫射体的太阳望远镜平场测量方法研究。我们研究了当前可用的四类漫射体材料——乳白玻璃、毛玻璃、高斯散射片和工程散射片在日冕仪和全日面望远镜的应用情况,并开展了相关的模拟、实验验证和数据分析。本文的主要研究结果为:1、乳白玻璃所形成的面光源接近理想均匀面光源,透过率接近日冕亮度,适用于日冕仪,直接拍摄即可得到平场像。相比现有日冕仪平场测量方法,本方法测量精度更高,且使得平场测量不再受天气和时间制约,并且允许乳白玻璃存在一定的装调误差,便于实现工程应用。2、毛玻璃在太阳视场角范围内形成的面光源均匀性达到99%,透过率约为0.2%,在望远镜曝光条件允许的情况下,可以直接拍摄得到平场像。通过与GONG和HMI的数据交叉定标,改正后的各项数据指标显著提高,低频轮廓与理论临边昏暗相关性达到0.99。3、高斯散射片的扩散角度进一步减小,视场透过率约为20%,缩短了平场测量和常规观测曝光时间的差距。背景修正后的扩散面光源均匀性可以达到99.6%。通过在全日面光球和色球望远镜开展实验验证和数据分析,色球局部视场的改正精度达到0.5%,并且能够有效改正全日面大尺度轮廓不均匀性。4、工程散射片对光源的扩散形状为平顶型,因此扩散面光源本身就具有很好的均匀性,透过率也与高斯散射片相当,可以快速便捷的完成平场测量和改正,并在此基础上开展了全日面速度场定标。利用平场改正像序列计算得到的全日面速度场与HMI速度场的相关系数达到0.923,日面赤道上的相关系数达到0.958。通过在全日面太阳望远镜或日冕仪上开展的实验验证,对比改正前后的图像可以发现,本文方法均可以有效改正脏点、灰尘、条纹等小尺度干扰的影响。同时,不同方向径向强度衰减不均匀等大尺度失真也能够得以改正或修正,使得图像强度变化与临边昏暗一致。整个改正过程中,日面上活动区、暗条等特征信息并不会受到影响。通过与国际数据交叉验证或观测设备数据自身验证等方式,利用不同指标对平场改正精度进行定量评价,证明本文研究方法具有很好的改正效果。本文的平场测量方法构建了与常规观测目标强度相近的面光源,因此无需移动太阳像即可获得平场像。这一系列方法使得日冕仪平场测量不再受到时间和天气的制约,也使得全日面望远镜平场从拟合计算到直接拍摄的转变。平场改正算法简单,通用性强,控制精度要求低,易于实现自动化,为我国现有和未来在建的天地基大视场太阳观测设备平场测量提供新的技术方法。
其他文献
国内外的航天实践表明,单粒子效应(Single event effect,SEE)是空间环境中诱发卫星异常的主要因素之一,而随着半导体器件工艺尺寸的不断缩减,微纳器件中单粒子瞬态(Single-event-transient,SET)脉冲效应引发的错误逐渐成为总软错误中的主导因素。深入研究微纳器件中SET脉冲的电荷收集、传输规律和在电路中传播引发的错误结果,并揭示其内在作用机制,可为抗辐照芯片设计
超声成像系统的成像分辨率往往与所选用的阵列孔径正相关,即分辨率随有效孔径的增大而提高。但在现实条件中,孔径的增大不仅会增加制造成本,提高制造难度,同时也会限制其的应用环境。在这种情况下,我们需要探索一种合适的超声成像方法,在提高超声系统成像分辨率的同时保证较高的信噪比和时间分辨率。本文受到基于压缩感知的无透镜鬼成像方法的启发,有意将关联成像与超声成像系统相结合,提出了基于压缩感知的超声关联成像方法
临近空间大气温度不仅影响各种航天器的发射与再入轨过程的安全性,同时也是大气动力学和热力学等模型的建立和光化学耦合物理机制的重要参量。因此,临近空间大气温度场的研究在国际上具有重要的科学研究意义和较大的军事应用价值,是目前国际上研究的热点。国际上对临近空间大气温度廓线的研究始于上世纪六七十年代,而我国在这方面的研究起步较晚。本论文的主要内容包括以下几个方面:(1)基于氧气A波段气辉的光化学反应机制、
本论文中,我们利用多卫星和多地磁台站联合观测分析了两例主相亚暴的触发特征,线性拟合分析了第23和24个太阳活动周内太阳极紫外辐射与磁暴强度的相关性。本论文主要分为两个部分:第一部分,根据Cluster星簇、Double Star、LANL系列和THEMIS多卫星和多个地磁台站的观测数据,联合分析了2005年8月24日强磁暴(SYM-Hmin~-179 n T)主相期间的强亚暴(AEmax~3708
磁重联是太阳风和磁层之间能量传输和物质交换的重要物理过程,氧离子(O+)不仅能够参与磁重联,还可以降低重联率,进而影响太阳风的能量和物质进入地球空间。研究向阳面磁层顶氧离子随太阳风条件,地磁活动和太阳紫外/极紫外辐射通量的变化,以及氧离子在上述不同条件下的空间分布不仅有助于理解氧离子在磁层的输运和逃逸,而且能为研究发生在向阳面磁层顶的磁重联和K-H不稳定性过程提供启示,还能帮助分析氧离子对太阳风能
稳定可靠的太赫兹源是太赫兹技术得到广阔应用的基础条件。基于肖特基势垒二极管的倍频器是太赫兹固态源的重要组成部分。受限于肖特基二极管击穿电压较低、漏电流较大和太赫兹单片倍频电路的制造技术等因素,目前国内自主研发的单片倍频电路使用频率和输出功率不高。同时,由肖特基结处的界面陷阱电荷引起的隧穿效应造成功率的泄漏,这一现象随着输入功率和工作频率的增加而愈加显著。因此,国内对太赫兹单片集成倍频器的研究还停留
等离子体作为宇宙中物质的主要组成,是空间物理研究的重要对象。等离子体层是磁层中最冷的部分,这部分的等离子体受近地空间电磁场的约束与地球共转。其的密度分布和动态变化受到磁层中磁暴,亚暴,波粒相互作用等物理过程的影响。而等离子体的分布变化也会影响到磁层中波的激发,间接影响高能粒子的沉降。本文对等离子体层在磁暴和亚暴期间的变化做了模拟和观测分析,并初步讨论EMIC波(Electromagnetic Io
地球唯一的卫星-月球,一直是人类进行空间探测的重点。自1959年前苏联成功发射月球1号探测器,人类正式开始月球探测,并迎来了两次探月热潮。随着月球探测进程的深入推进,载人登月工程成为了新一轮研究热点。月球表面的粒子辐射环境,特别是中子辐射环境是威胁宇航员安全以及航天器可靠性的重要因素,因此对粒子辐射环境数据的准确性提出了更高的要求。近年来国内外对月球粒子辐射的探测集中在月球轨道高度,缺少来自月球表
大规模低轨(Low Earth Orbit,LEO)宽带卫星网络通过提高发射卫星数量来降低对于单颗卫星的能力要求。借助星间链路组网,能够突破地理位置的局限实现全球不间断信号覆盖,为全球用户提供大宽带、低延时、无缝连接的网络服务。大规模LEO宽带卫星网络与地面通信网络系统相兼容,是天地一体化网络的重要组成部分,迅速发展为世界各国争相研究的重点。路由作为网络通信的关键技术,影响着信息的传递效率和网络的
近年来,基于物理的以强大计算能力为基础的日冕行星际过程三维数值模型已经成为灾害性空间天气预报建模的重要手段,而日冕又是空间天气事件因果链条的关键区域,其中背景太阳风和日冕磁场是研究的重要内容之一。因此,关于定态日冕三维数值模拟的研究具有重要的科学意义和应用价值。本文基于六片网格系统和有限体积方法,利用旋转-混合格式建立了新的日冕背景太阳风三维磁流体力学(Magnetohydrodynamics,M