基于超构材料的新型吸波器研究

来源 :西南大学 | 被引量 : 0次 | 上传用户:jundy123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电磁超构材料是一种人工电磁结构,与入射电磁波相比其尺寸处于亚波长,而排列方式为周期性排布。由于其表层图案和设计结构形式可以多种多样,超构材料呈现出非常多奇特的物理性质。通过调节结构尺寸和周期排列等方式,可对电磁波振幅、相位、极化方向进行自由控制。电磁超构材料吸波器同传统吸波器相比,具有厚度薄、吸收频带宽、吸收效率高等优点。本论文聚焦新型超构材料吸收器的研究,主要开展了如下工作:(1)随着现代雷达探测波段越来越宽,而常规超宽带超构材料吸波器所需厚度往往非常大,本论文设计了一种基于水的光学透明超宽带吸收器,在较低厚度下实现了超宽带吸波。其基本单元由两个直径不同的水柱垂直堆叠而成。全波仿真结果表明,该吸收器不但对两种极化波都有效,且在4.6-33.7GHz和51-83GHz有两个吸收频段,吸收效率均大于90%。此外,所提出的水基MA对TE波和TM波都有广角吸收性能。有趣的是,当电磁波以TM极化方式入射时,吸收性能随着入射角增大而逐渐增加。由于MA的总厚度只有6.4 mm,该结构可能在隐身设备窗口和电磁兼容领域中有潜在的应用。(2)随着武器装备日益发展,其应用环境也变得越来越复杂,而高温环境下的隐身技术在当前亟待研究。由于大部分超构材料吸波器只能在200℃以下工作,不能用于高温微波吸收。随着温度的进一步升高,磁响应逐渐恶化,在居里点温度以上完全消除,通常不能超过700℃。设计并实验实现了拥有高吸收率,且耐高温的电阻型超构材料微波吸收器,其基本单元由底层金属板,耐高温介质层,和表层方形电阻薄膜所构成。全波仿真表明,设计的单层电阻型耐高温吸波器在7.94 GHz-19.47 GHz的吸收达到-6d B,厚度仅为1.6mm。双层电阻型耐高温吸波器在4―18 GHz的吸收达到-4.5d B,厚度仅为3.2mm。光学透明超宽带吸收器可能在隐身设备窗口和电磁兼容结构有潜在应用,而电阻型耐高温吸收器提供了一种实现耐高温微波吸收器的途径。因此,本文工作有重要的工程应用价值。
其他文献
20世纪新出简牍墨迹之所以受到广大书法研究者的关注,主要缘于其独特的艺术特色为中国书法史提供了独一无二的新窗口、新视野。而追求独特的艺术创造,历来是艺术家们孜孜以求地所要探求的目标,对悬泉汉简书法艺术进行理论研究,自然也是众多美术、书法爱好者一直关注的热门论题。如今,关于悬泉汉简书法艺术的研究大多集中于发掘报道、介绍实物、图版资料整理与研究、纸张断代及制造技术等问题上,但所牵涉的内容较少,也不成体
自从在层状石墨中成功剥离出单层六角石墨(称为石墨烯)以来,石墨烯具有的独特的物理化学性质以及优越的性能激发了人们对其它二维材料的研究热情,其中磁性二维材料能广泛应用于高能效超紧凑型自旋电子学器件(例如高密度数据存储,高集成密度,低功耗和高操作速度),因而寻找和设计稳定的具有本征磁性的二维材料是非常有必要的,这也是当前的一个研究热点之一。最近,实验上发现了一些有清晰的铁磁性的二维层状材料,引发了人们
古往今来,人物题材绘画都是世界各文明主要的艺术表现与记载手段之一。但唯有两河给养的华夏民族,神奇地将水墨的创造性因素,融入人物性绘画的艺术语言,并落地生根成为一门独立的艺术,发扬光大,延续千年,延绵至今,作为一个东方文明的醒目的文化符号而流传于世界各地。既然是门独立的艺术,背后也定会有一个独立的文化背景。中国古代的学术思想受佛、道二家的影响颇深,但众所周知的是,这其中只有道家才真正是华夏文明土生土
利用电子自旋来补充或取代电荷的自旋电子学以其能耗低、处理速度快、集成密度高等优点,将在未来的信息技术中具有广阔的应用前景。自2004年以来,石墨烯的发现引起了学术界对新型二维材料奇异特性的密集型探索。随着微电子技术的不断发展,器件的尺寸将愈发压缩、芯片的集成度及工作频率亦势必攀升,仅对电荷属性的操控技术终将满足不了科技发展的社会,开发多自由度共存的材料已成为大势所趋,而拥有电荷和自旋双重属性的二维
信息安全作为一种国家战略一直受到重点关注。光混沌保密通信是将信息加载到以半导体激光器(Semiconductor laser:SL)等非线性器件产生的混沌载波中进行安全传输,从而实现物理层的数据加密。目前,基于SL的光混沌保密通信研究主要聚焦于系统的安全性、传输距离和传输速率。特别的是,人工智能技术的兴起极大的推动了国民生产各个领域的发展。显然,将人工智能技术与光混沌保密通信技术有机结合,实现高速
储备池计算(Reservoir Computing,RC)是机器学习领域引入的一种受生物学启发的新颖计算方式,解决了传统计算机在处理诸如语音识别、人脸识别、混沌时间序列预测等复杂任务时能耗高、计算速率较低等问题。RC的一个主要优点是训练算法的有效性和快速收敛到全局最优,因为只需要训练输出的连接权重,不需要对网络内部连接进行优化,这种概念使RC的硬件实施成为可能。RC的硬件实施方案有两种:一是由空间
近红外激光二极管(LD)泵浦被动调Q激光器具有稳定性好、转换效率高、光束质量好和结构紧凑等突出优点,在生物医学、激光通信、军事武器和科学研究等领域具有广泛应用。掺Yb3+陶瓷激光材料兼备掺Yb3+材料和激光陶瓷两者的优点,在能级结构、上能级寿命、制备工艺和热机械性能等方面均具有显著优势,是1μm波段激光器的理想工作物质。本文对LD泵浦连续和被动调Q Yb:Lu3Al5O12(Yb:LuAG)陶瓷激
由于垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)中增益介质和腔的弱各向异性,导致VCSEL可以激射两个沿晶格方向且彼此正交的线性偏振光。在外部扰动下,VCSEL会出现偏振开关(Polarization Switching,PS)和偏振双稳(Polarization Bistability,PB)这两种特殊的动力学态。VCSEL的PS
神经网络广泛应用于模式识别、生物医学以及经济等众多领域,极大的推动了人工智能的发展。其中,光子脉冲神经网络在信息处理速度以及能耗等方面相较于传统神经网络具有一定的优势。作为光子脉冲神经网络中重要的信息处理单元,光子突触可以模拟人类大脑中存在的与学习和记忆紧密联系的脉冲时间依赖可塑性(STDP)学习机制,因而已经成为了当前的热门研究课题之一。特别的是,垂直腔半导体光放大器(VCSOA)因具有易集成、
超快超强激光脉冲驱动原子相互作用发生了一系列有趣而新颖的高阶非线性现象,如高次谐波产生和非次序双电离等。强场非次序双电离中涉及的两个电子具有强烈的关联性,这为探索自然界普遍存在的电子关联行为提供了一个简单有效的途径。自1982年L’Huillier等人发现非次序双电离以来,强场非次序双电离一直是强场物理领域的热门课题。大量研究表明非次序双电离中电子关联行为及其微观动力学依赖于激光脉冲的强度、波长、