基于深度学习的二指机械手物体抓取研究

来源 :东北大学 | 被引量 : 0次 | 上传用户:tianhaiyandml
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
机器人抓取物体是机器人和真实世界交互必不可少的功能,对于人类来说抓取物体基本不需要思考就可以完成,但是对于机器人来说对于不同物体准确灵活的抓取却是一个高难度动作。机器人想要达到和人类抓取物体一样的灵巧性和交互性,还需要克服许多机械和计算问题。本文将二指机械手物体抓取和深度学习结合起来,对二指机械手在刚性物体(如工具、家用物品、包装物品和工业部件等)抓取位置选取问题上进行研究。由于传感器数据噪声和物体遮挡,很难准确的推断物体的形状、位姿、材料、质量以及夹具与物体之间接触点的位置等物理性质,因此让机器人能够抓取各种不同的物体有很大的挑战。本文通过使用大量包含人类抓取标签的数据训练一个深度学习网络对多种不同的物体做抓取规划。利用Kinect2.0深度相机采集到物体深度图像,首先根据Force-Closure条件生成一系列的候选抓取位置,以抓取位置中心为原点、抓取轴线为主方向以适当大小尺寸对物体进行裁剪,然后利用训练好的深度学习网络对每对抓取点进行抓取稳定性评估,选出最优抓取点执行抓取动作。对于原始方法抓取位置选择的局限性,比如物体内部有狭小的缝隙从而容易使夹具和物体发生刚性碰撞导致抓取失败,本文提出了选择外围轮廓抓取的方法,首先通过图像形态学中的闭运算,将物体内部的狭小区域填充之后再重新选择抓取点,解决了在物体轮廓内部选取抓取点所导致的容易与夹具发生碰撞的问题,同时由于仅选择外围轮廓进行抓取点采样大大减少了抓取位置的数量,在很大程度上提高了程序运行效率。为了实现多物体场景下对物体选择性抓取,本文通过提取彩色图像SIFT特征与物体模板的SIFT特征进行匹配得到目标物体的感兴趣区域,在感兴趣区域内进行抓取位置选择与决策,实现对特定目标的抓取。通过实验仿真和二指机械手真实抓取的实验结果表明基于深度学习的物体抓取位置选择方法可以实现对视野范围内不同物体任意摆放姿态的成功抓取,可以满足机械手对物体准确灵活抓取的要求。
其他文献
多目标优化问题在实际工程应用中广泛存在,如汽车稳健优化设计,水资源管理,投资组合计划等问题。常规的多目标优化算法通常需要数以万计的评价次数,只适合解决一般多目标优化问题。常规多目标优化算法求解昂贵多目标优化问题的每一次评价都会花费高昂的时间或经济代价,因此并不适用于求解昂贵多目标优化问题。由于高斯模型可以很好地预测原模型并提供不确定信息,对解决实际的昂贵优化问题提供很大帮助,因此关于昂贵多目标优化
高熵合金是最近几年发展起来的新型合金,综合性能优异,具有广阔的应用前景。Fe50Mn30Co10Cr10是具有TRIP效应的双相高熵合金,其强塑性优于大多数传统合金和高熵合金,有望发展成为新型工程材料。但是目前Fe50Mn30Co10)Cr10高熵合金的屈服强度还无法满足工程应用的要求,亟待进一步提高。因此本研究通过引入间隙原子N来进一步改善Fe50Mn30Co10Cr10高熵合金的力学性能。本文
弥散强化铜基复合材料因具有良好的高温与室温性能,常被应用在电子电器设备中。但由于国内对此种材料的研究起步比较晚,材料制备工艺不够成熟,其各种性能指标还有待进一步改善。本文探索了制备工艺对Cu-La2O3复合材料组织与性能的影响,以期为铜基复合材料的设计及性能改进提供理论基础和技术支撑。本文采用内氧化与放电等离子烧结相结合的方法,制备高强高导Cu-La2O3复合材料。通过扫描电子显微镜(SEM)、透
在高稀土含量的253MA稀土耐热钢和高铝高稀土含量的稀土铁铬铝合金的连铸过程中,中间包内普遍发生较为严重的渣金反应。中间包覆盖剂成分发生偏离,性能逐渐恶化,结壳现象频发,严重恶化其使用性能,影响生产工艺顺行。而且,稀土耐热钢和稀土铁铬铝合金中稀土、铝等还原性元素含量远高于普通钢种。上述钢种连铸过程中间包内渣金反应的机理仍未得到解析,渣金反应过程钢中不同元素和渣中不同组元的作用行为仍有待明确。本文以
硫化钼和硫化镍是金属硫化物的重要组成部分,它们来源广泛,成本低。作为电极材料时,硫化钼和硫化镍都具有高的理论容量和电压平台。但这两种金属硫化物电极材料存在低离子/电子电导率,体积易膨胀粉碎等问题。本文采用湿化学法合成硫化钼和硫化镍负极材料,并采用缩小粒子尺寸,制备网状形貌碳改性等方法提高其电化学性能。本文首先通过简单的湿化学法合成一系列由不规则MoS2纳米粒子堆叠形成的纳米结构,探究了热处理温度和
马氏体相变是材料科学与工程领域重要基础理论,是钢铁材料热处理强化的主要手段。马氏体相变驱动力受奥氏体在Ms点的屈服强度、母相奥氏体缺陷密度以及应力场等的影响。一般情况下,低碳钢(Wc<0.20%)或低碳合金钢在强烈淬火(5%-10%NaCl或10%NaOH水溶液)后,才能获得板条状马氏体;工业纯铁需要105-106℃/s的冷却速度才能淬成板条马氏体。压力是一种有效的调控方法,它的独特之处在于不用改
各种便携式移动电子设备,新能源汽车以及大规模储能技术的迅速发展,对于锂离子电池性能提出了更高的要求。目前商业化负极材料石墨的理论容量仅为372 mAhg-1,不能满足锂离子电池性能提升的进一步需求。过渡金属氧化物因其储量丰富、合成简单、成本低、理论容量高以及电化学稳定性高等优点有利于成为下一代锂离子电池材料。但其充放电过程中体积变化较大,电导率和锂离子扩散能力较差等缺点限制了其实际应用。为了解决上
过渡金属氧化物逐渐成为为锂离子电池负极材料的热点之一。其中,TiO2负极材料具有安全、环境友好、循环寿命长以及倍率性能高等优点。但其电子电导率低,离子扩散系数小,在高电流密度时电解质/电极界面电阻大,这些缺点限制了 TiO2负极材料的应用。为了解决上述问题,本文以TiO2基纳米材料为研究对象,对其进行宏观及微观结构调控,获得电化学性能优异的TiO2基负极材料。首先,通过水热法合成纳米颗粒自组装的微
高熵合金是近些年发展起来的一种新型合金,具有非常优异的性能,应用前景广泛。铸态高熵合金大多为枝晶组织,存在成分偏析、疏松、晶粒粗大等缺陷。形变热处理和强磁场条件作为细化晶粒和调控合金组织性能的有效手段,能够大大改善铸态高熵合金的组织性能,对高熵合金的研究与应用具有积极作用。本文对感应熔炼得到的A10.3CoCrFeNi高熵合金铸锭在1200℃下保温10h均匀化处理之后进行90%和95%变形量的冷轧
光学回音壁模式(Whispering Gallery Mode,WGM)谐振腔由于拥有超高的品质因子、极小的模式体积、非常高的功率密度和极窄的光谱线宽,使其在一系列传感和技术应用中表现出了非常高的潜力,逐渐引起了科研工作者的关注。同时,材料科学、制造技术和光电传感方法的发展,也赋予了谐振腔新的功能、独特的传感机制和无与伦比的测量灵敏度。为了满足不同的传感应用要求,各种各样几何结构的谐振腔被研发出来