论文部分内容阅读
激光测距技术,尤其是相位式激光测距技术,是一种应用广泛的距离测量技术,具有精度高、昼夜可用且性能可靠等特点,受到工程测量部门的广泛使用。一般情况下,相位式激光测距是用一调制信号对发射连续的光波进行光强调制,利用混频技术和自动测相技术,测量“调制光波”往返于被测距离的相位差,间接求得待测距离。然而对光强的连续调制存在调制波形易变形,且随着调制频率的增加,调制深度会降低,特别是在高频时就更为严重;并且与脉冲式激光测距相比,连续光强调制消耗功率大,测量距离不远等不足。从而限制了相位式激光测距技术的应用。针对连续光波光强调制存在的不足,分析相位式激光测距的检相过程,发现对检相有用的信号是整形过程中的过零点的部分,而连续信号的其他部分对数据处理没有贡献,反而这些部分使激光器连续工作,既损耗着功率,也在减少激光器的寿命。根据信号的傅里叶变换理论、频谱分析方法,脉冲(方波)与同频正弦信号之间的关系,并借鉴脉冲式激光测距技术的优点,产生了基于脉冲信号调制的相位式激光测距想法。该方法是通过用等周期脉冲调制激光光波来代替连续光强调制激光光波,即脉冲出现的位置代表原连续调制信号的过零点位置,而激光光波脉冲的幅度和宽度不变。因此,当激光功率不稳定时,发射的激光脉冲强度变化时不会影响到调制信号的相位信息。利用等周期激光脉冲光波往返于被测距离的相位差,求得待测距离。根据该激光测距原理,本文利用DDS频率合成技术和高频电路设计知识,设计了激光测距系统方案,并对该方案进行分析,包括高频连续正弦信号与同频脉冲(方波)信号之间的关系,产生高精度高频率脉冲(方波)的方法,高频脉冲(方波)信号的混频技术以及基于CPLD的数字鉴相技术等。随后进行了电路制作,硬件实现和系统调试等工作。这样即实现了脉冲测距的测程远,功耗小的优点,也实现了相位式激光测距的高精度优点,有效地解决了相位法测距中测程与测量精度之间的矛盾,具有实际使用价值。总之,随着激光技术和电子技术的发展,激光测距向着高精度、大量程的方向发展,势必在多种领域得到更为广泛的应用。尤其是在激光大气通信,非合作目标的高精度、远距离激光测距的应用方面具有很大的应用空间。