Ag/Ti3AlC2电接触材料界面与性能研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:eaglecmk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低压电路中“万能触头材料”Ag/CdO因环保问题应用受限。Ti3AlC2增强Ag基复合材料由于具备良好的导电、导热性及良好的加工性能等,是一种极具潜力的替代材料,可应用于开关、继电器、接触器等电器设备中。然而,在Ag/Ti3AlC2复合材料烧结过程中,两相界面结构的变化会影响材料的组织、性能与应用。因此,Ag/Ti3AlC2复合材料的界面引起了广泛关注,但目前仍存在界面调控困难、界面反应机理及界面对性能影响机制不明等诸多难题亟待解决。本文以复合材料的界面为切入点开展研究,探索Ti3AlC2的碳包覆(C@Ti3AlC2)技术,制备Ag/C@Ti3AlC2复合材料,并测试其物理及耐电弧侵蚀性能,从而分析Ag/Ti3AlC2材料界面与性能之间的关系,阐明其耐电弧侵蚀机理。主要研究内容与结果如下:探索了放电等离子烧结(SPS)制备Ag/10wt.%Ti3AlC2的工艺参数,确定最佳烧结工艺为:加载压力50 MPa,800℃保温20 min。同时,采用无压烧结制备Ag/10wt.%Ti3AlC2复合材料(800℃保温2 h)。测试比较了两种材料的性能,结果表明SPS制备的材料具有更高的密度和硬度,且导电性略有提升。采用了间苯二酚-甲醛树脂包覆法制备C@Ti3AlC2粉末,通过调整间苯二酚与甲醛用量,可控制备了不同厚度(t=50 nm-200 nm)的碳包覆层。采用SPS制备出t=0 nm-200nm的Ag/C@Ti3AlC2复合材料,并进行界面表征与性能测试,研究界面对物理性能的影响。结果表明,碳包覆层可以有效抑制界面反应,且随碳层厚度的增加,材料的密度、硬度和压缩性能逐渐下降,而导电、导热性能逐渐提高。再对SPS和无压烧结制备的Ag/Ti3AlC2、SPS制备的Ag/C@Ti3AlC2进行了6000次的电弧侵蚀测试,并与Ag/C触头进行性能对比。结果表明,SPS制备的Ag/Ti3AlC2触头的耐电弧侵蚀性能优于无压烧结样品;而随碳层厚度t的增加,Ag/C@Ti3AlC2触头性能逐渐劣化,但仍优于Ag/C触头。最终观察并分析上述触头电弧侵蚀后的微观形貌,结果显示,在侵蚀过程中Ag主要发生喷溅、蒸发沉积及气化等,其中Ag的喷溅是造成材料损失的主要形式。Ti3AlC2在侵蚀过程中分解氧化为TixOy聚集在触头表面,并在长时间电弧作用下逐渐被破坏。Ag/Ti3AlC2触头由于良好的界面结合,大幅减小了电弧侵蚀过程中Ag的喷溅损失。此外,由SPS工艺赋予Ag/Ti3AlC2的高密度、高硬度等优点,也有利于增强触头的耐电弧侵蚀性能。
其他文献
卷曲二维材料得到的一维纳米结构不仅能继承二维材料的优异性质,还会表现出专属于一维纳米结构的本征物理或化学性质。碳纳米卷和二硫化钼纳米卷已经作为优异的一维纳米材料获得了广泛的研究。基于此,本文以磷烯为研究对象,通过第一性原理计算系统研究了不同大小、层数和手性的磷烯纳米卷的稳定性和电子结构等性质。主要结论阐释如下:(1)黑磷纳米卷的稳定性和电子结构。黑磷是继石墨烯和二硫化钼之后又一个引起研究者们广泛关
超黑材料一般指光反射率小于1%,吸收率大于99%的材料。由于能够捕获几乎所有的入射光,超黑材料在航空航天、军事和能源等领域获得广泛应用。现有的超黑材料主要包括具有低折射率的碳基材料及具有特殊表面结构的镍磷合金、黑金和黑硅等材料。但大多数材料的制备方法复杂,成本高昂,且仅能在相对较窄的波段范围内表现出超黑的特性。鉴于此,本课题尝试采用简单易行的动态氢气泡模板(DHBT)法开发具有宽波段超黑性能的新金
非线性光学的发展很大程度上得益于新型光学材料的出现和应用。近年来,非线性光学材料发展非常迅速,除了常规的体材料以外,微纳结构材料的发现使得非线性光学材料的范围拓展到了纳米尺寸,在这其中核壳纳米材料为非线性光学的发展带来了新的契机。一般情况下由于核壳纳米粒子具有优于单一金属纳米粒子的性能,因此在电子、光学、催化和微电子学等领域得到了广泛的应用。而在非线性光学领域,核壳结构粒子因其比单组分的纳米粒子具
自2004年石墨烯发现以来,二维材料获得了研究人员的广泛关注,逐渐成为物理、化学、材料等多个学科共同关注的重要领域。由于二维材料具有独特的原子量级厚度的结构特点,并表现出了优异的光电、机械和热学性能,因此在不同领域特别是高性能纳米器件开发上有着重要的应用价值。例如,石墨烯的室温电子迁移率约为104 cm2V-1s-1,能够制造快速运作的晶体管。二硫化钼从块材到单层,电子结构发生改变,间接带隙变成直
2014年,研究人员利用高压合成技术制备出了层状超导材料AP2-xXx(A=Zr,Hf;X=S,Se),这类材料与铁基超导体111体系类似,都具有PbFCl型晶体结构,空间群为P4/nmm。随着掺杂含量的增加,Tc相图呈现出与铁基超导体类似的“圆顶”形状,表明该体系中可能存在非常规超导电性。此外,2015年,研究人员在铁基超导体122体系(ThCr2Si2结构)中发现了一类新型的超导材料(La0.
超材料(metamaterial)是一类具有人工微纳结构和新奇物理性质的复合材料,也称为超构材料或超颖材料。该类材料具有超常的物理性质,能够突破自然材料自身的局限性,其应用价值也重点体现在对于电磁波的控制方面。例如,超透镜、偏振转换、完美吸收、隐身材料等特性。这些不断涌现的突破性进展必将为通信、传感、探测、成像等产生深远影响。近年来,随着超材料研究工作的逐渐展开和不断深入,理论和技术日趋完善,其应
随着人们对器件小型化的要求越来越高,同时具有两种及以上功能的新型材料急需发展。在产业化应用领域和实验室科研领域,铁电材料和磁性材料都被广泛且深入的研究。如果一种材料中同时存在铁电性和铁磁性,二者之间可以互相调控,那么这种材料在信息存储领域具有很高的应用价值。目前,科研领域已经有大量工作报道了多铁材料的磁电耦合效应。然而到目前为止所发现的单相多铁材料还比较稀少。在氟化物领域存在许多磁性铁电体,对这些
压力作为基本热力学参量,是物性调控的重要手段。通过有效地减小原子间距,压力可以调控能带结构、能带宽度以及声子的频率,进而达到调控功能材料物理特性的目的。相比于化学掺杂,高压具有不改变材料本身的化学计量比、不引入晶格无序和额外电荷载流子等优点,在材料探索中实现了更加高效的原位调控和测量。低维材料因为具有电荷密度波(CDW)、非常规超导电性和拓扑表面态等奇特物性,在理论和应用领域得到了广泛关注。本论文
自1911年发现超导以来,人们一直寻找具有更高转变温度的新超导体,并探索其中超导机理。在随后几十年中,研究人员发现了许多新的转变温度(Tc)低于30 K的超导体,这些超导体中,绝大多数的超导性质都可以用BCS理论解释。最近,一些具有AB3(Pu Ni3型)和AB2(Mg Cu2Laves相)结构的化合物成为广泛研究的对象,其中A代表稀土金属(La-Gd),B代表过渡金属:Ir或Rh。该化合物包含了
纳米铁氧化物具有优异的电学、磁学及光学性能,在光催化、无机颜料、生物医学、磁性材料、气敏传感等众多领域有着广泛的应用。现有的纳米铁氧化物制备方法存在着易团聚、结晶性差、尺寸偏大,以及制备成本高、操作复杂和原料毒性大等问题,简便高效地制备纳米铁氧化物一直是本领域研究者追求的目标之一。本论文创新性地使用了水溶性盐隔离法来制备铁氧化物纳米颗粒,通过引入高熔点水溶性盐隔离相,有效抑制了高温过程中纳米颗粒的