基于深度监督神经网络的输电线路关键目标检测研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:tgb567_2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
输电线路场景下,防震锤、绝缘子、导线等关键设备的损坏间接影响供电系统的正常稳定运行。定期巡检输电线路,可以有效的避免供电系统故障。如今通常采用无人机巡检输电线路,并拍下输电线路场景下的巡线图像,最后人工查看巡线图像中的缺陷。因此,为了提高输电线目标缺陷检查效率,需要研究输电线关键目标检测,实现目标的快速定位,最终提高输电线路巡检工作效率。
  在输电线关键目标检测研究过程中,以手工特征为主的传统目标检测方法,只能针对特定类型并且具有易区分特征的目标,其鲁棒性较差。当前主流的基于深度神经网络的目标检测算法弥补了传统目标检测方法的不足之处,提高目标检测算法的鲁棒性。然而,在输电线路关键目标检测的研究中,使用深度监督神经网络仍存在以下问题:第一,缺少足够的训练数据;第二,网络浅层特征表达未有效利用;第三,目标空间定位不准确。因此,本文主要以解决以上3个问题作为研究出发点,并完成的主要工作如下:
  ①参考VOC官方标注指导文件,构建了包含23024个输电线路关键目标的巡线图像数据集。提出了利用PCA扰动和透视变换的巡线图像数据扩充方案,以及提出了对应目标标注位置转换算法,解决了缺少训练数据的问题。
  ②受特征金字塔FPN以及多层卷积特征融合网络的启发,结合残差块,提出了浅层残差投影结构,从而提升了卷积神经网络CNN对输电线关键目标的高分辨率特征表达能力,尤其有利于提升小尺寸目标的检测性能。
  ③针对Faster R-CNN的区域建议网络RPN,提出了适用于巡线图像数据集的参数微调辅助优化策略,微调了区域建议网络RPN中的锚框参数以及正负样本训练比例参数,技巧性的提升输电线关键目标检测算法性能。
  ④研究了用于定位位置修正的IoU损失函数,存在网络参数无法优化的不足之处,针对IoU损失函数的不足之处,提出了IoUC损失函数,解决了网络训练过程中参数无法学习的问题。
  本文将扩充后的巡线图像数据集,浅层残差投影结构的CNN网络,微调区域建议网络RPN参数,以及IoUC定位损失函数,分别融入Faster R-CNN进行对比实验,发现导线,绝缘子,防震锤的检测平均精度mAP都有所提升。融合所有方法的输电线关键目标检测平均精度mAP提升了69.7%。
其他文献
滑坡灾害是一种极具破坏性的地质灾害,严重威胁人们的生命财产安全,造成全球生态环境的破坏和资源的浪费。因此,深入对滑坡预测及其控制系统的研究对降低滑坡灾害的影响具有重要意义。
  滑坡演变过程受多种因素影响,具有很强的非线性和不确定性。人工神经网络可以避开复杂的机理分析,建立系统的黑箱模型。本文以三峡库区白水河和石榴树包滑坡为研究对象,将神经网络引入滑坡的预测和控制系统研究中。首先,采用Elman动态神经网络建立滑坡单步预测模型,利用滑坡时间序列数据特点改进BP算法,降低模型训练的时间复杂度,以较高的
传统巴甫洛夫联想记忆实现的学习和遗忘功能,分别对应于经典条件反射中的强化和消退定律。实际上,经典条件反射除了强化和消退定律外,还包含了泛化和分化定律。在传统的巴甫洛夫联想记忆基础之上加入泛化和分化功能,可以更加充分的模拟大脑的联想记忆过程,为类脑系统的进一步发展提供参考。
  本文设计了基于忆阻的联想记忆泛化和分化电路,电路经过最初的联想记忆学习之后可以对某种条件刺激做出反应,然而当相似的条件刺激作用于电路时,电路会做出类似的响应,这就是泛化现象。为了使神经网络电路能够充分的认知这两种相似的刺激并最
由于数字图像数量的快速增长,基于内容的图像检索已成为管理图像数据库的强大工具。但是,随着图像数据库的扩大,图像检索系统对存储和计算资源的需求随之增加。幸运的是,随着云计算的繁荣,中小型企业开始在云平台上构建和维护大型、经济、高效的图像检索系统。尽管云平台提供了便捷的存储、计算和通信服务,但它们带来了新的隐私问题。在加密图像上进行检索是一种保护用户隐私的技术,并且在过去十年中学者们已经进行了广泛的研究。尽管一些方案已经被提出并可以在一定程度上保护用户隐私,但是它们仍然具有一些缺点。首先,在实践中,仅图像的部
近年来,大学生心理健康日益成为高等学校乃至全社会关注的一个问题。在具有心理健康问题的大学生群体中,学校特别关心大学生心理危机个体,即有较高风险罹患心理疾病的大学生个体。这类学生可能会出现严重心理障碍,或者因为心理问题实施自残、伤人甚至自杀行为,从而严重影响学生的学习、生活和人身安全。
  心理量表是目前普遍使用的心理健康检测工具,然而直接使用量表的传统计算方法识别心理危机个体存在许多不足,导致较高的假阳率和假阴率。本文提出了一种基于图神经网络的心理危机个体识别方法,以弥补传统识别方法的不足。本文的主
近年来,移动互联网、边缘计算、物联网等技术的发展和成熟催生了大量新的移动设备和移动应用,如有健康监测功能的可穿戴设备、移动电子商务、网络手游、短视频等。这些新兴的移动应用有着更高的数据存取需求和更大的计算量,同时表现出新的数据存取模式和数据分布特征。小文件随机读写操作占到这类移动应用中数据存取的很大部分,这种大量的细粒度存储需求导致基于块设备建立的移动设备存储系统不足以满足这类应用的存储需求。研究表明,移动设备性能瓶颈由原来的网络和处理器已转为现在的存取能力。新兴的非易失性内存(NVM)具有可字节寻址、高
随着数字图像技术的发展和多媒体应用的普及,图像处理和传输变得越来越重要。人们对图像的传输和存储有了更高的要求,对图像的质量要求也逐渐提高,例如远程医疗、航空航天、多媒体教学和视频安防等领域。图像压缩编码在图像处理中起着至关重要的作用,此对图像压缩的相关技术和科研工作带来了全新的挑战。几乎所有多媒体应用都追求具有更高压缩率,更低计算成本和更好视觉质量的图像压缩技术,这也是图像压缩的三个关键指标。
  JPEG-XR(旧称HD Photo)是一种连续色调静止图像压缩算法,是在2007年由联合图像专家小组
图像检索具有重要的应用价值和研究意义,但也面临检索速度提升、结果排序准确性等诸多现实挑战。哈希技术通过将高维特征映射到低维二值空间,可有效加快距离计算,是目前提升检索速度的重要手段。此外,深度学习能够在一定程度上缓解图像底层视觉信息与高层语义信息之间的“语义鸿沟”。因此,将深度学习和哈希方法结合应用于图像检索具有重要的研究价值和意义。
  本文研究基于深度学习和哈希技术的多标签图像检索,针对目前多标签检索领域存在的3个研究难题,分别对其进行深入研究并提出相应解决策略。本文创新点和主要内容如下:
近年来,大量的研究者对文字、语音以及面部表情做了情感分析的研究。由于人类的情感是非常复杂的,且表达情感的方式也十分多样。所以同时考虑不同模态的特征,对于准确判断情感的倾向来说就显得尤为重要。现如今的研究大多停留在单模态或双模态的情感识别,存在着准确率不高的情况。所以本文为了解决该问题,针对文本、音频、视觉这三个模态进行了多模态情感识别的研究。本文的创新点主要有以下两点,总结如下:
  ①本文提出了一个基于信息增强的多层次上下文多模态情感识别模型IEF-BiGRU。该模型使用了信息增强的方式来放大多模
大规模图像检索任务通常被抽象为近似最近邻搜索问题(Approximate Nearest Neighbor Search,ANN),哈希方法作为ANN的代表方法,被广泛应用于图像检索任务中。近年来,基于深度神经网络良好的特征提取能力,一系列深度哈希方法被提出,也使基于深度哈希的多标签图像检索方法成为新的研究方向。
  本文聚焦多标签图像的深度哈希检索任务,着力解决其存在的多标签图像相似度的精确度量、图像代表性语义信息的提取、哈希码汉明距离与原始图像相似度的一致性保留3个难题,提出一种融合注意力机制和
随着车联网、无线通信技术的不断发展,涌现了一系列诸如超高清视频、自动驾驶等计算密集型、时延敏感型应用。传统集中式的云计算架构因过重的主网络负载和过长的服务响应时延,无法满足海量终端和新兴应用所需的低时延、高带宽等需求。有研究提出,联合车联网和雾计算形成车载雾计算(Vehicular Fog Computing,VFC),将计算、存储以及通信等功能从云端下沉到无线网络边缘,为移动终端提供邻近的实时计算服务,从而减轻网络负担,降低响应时延。VFC作为一种新的应用范式,在车联网中具有广阔前景。然而,VFC架构中