【摘 要】
:
高压可以通过改变物质内部的化学键,将机械能以相变的方式储存在物质内部,并在适当的外界条件下将能量释放出来,通过高压的方式来合成高能密度材料是含能材料研究的一个重要思路。聚合氮是高压合成高能量密度材料的代表,但是聚合氮生成条件十分严苛,产物也不易保持到常规条件。一氧化碳与氮气具有相同的分子量和核外电子数以及相似的结构,而且实验已经验证其在高压下可以聚合,探索聚合一氧化碳压制聚合的热力学路径,产物主要
论文部分内容阅读
高压可以通过改变物质内部的化学键,将机械能以相变的方式储存在物质内部,并在适当的外界条件下将能量释放出来,通过高压的方式来合成高能密度材料是含能材料研究的一个重要思路。聚合氮是高压合成高能量密度材料的代表,但是聚合氮生成条件十分严苛,产物也不易保持到常规条件。一氧化碳与氮气具有相同的分子量和核外电子数以及相似的结构,而且实验已经验证其在高压下可以聚合,探索聚合一氧化碳压制聚合的热力学路径,产物主要结构、性质以及稳定性方面是现在亟待解决的问题。本文通过第一性原理分子动力学方法对一氧化碳在不同热力学条件下的聚合进行了详细地研究。通过第一性原理分子动力学方法对不同初始条件、不同超胞大小、不同温度、以及含有不同浓度的H2和N2杂质的CO进行计算模拟,发现:1.通过对比以α与ε相的CO初始结构进行MD模拟,发现以ε-CO作为初始相更加有利于CO的聚合;采用不同超胞大小作为初始态,证明超胞大小对聚合结构有很大影响:当超胞中含有108个CO时开始聚合时的压力在1015 GPa之间,当超胞中含有64个CO分子时开始聚合时的压力为10 GPa。而当压力超过15 GPa时,超胞大小对聚合的影响降低。我们同时模拟了300 K、350 K和400 K条件下的CO的聚合,发现随着温度的增加开始聚合时的压力在降低,但是显而易见的是在压力超过15 GPa时,温度的影响在降低。2.对含有H2杂质CO混合物进行第一性原理分子动力学研究。确定了含有不同浓度H2的CO开始聚合时的压力有显著差别,其中含有的H2浓度在2.11%6.22%之间时CO的聚合压力可以降低到5 GPa。其聚合过程可以简单描述为:在压力为1 GPa时H2参与反应形成各种小分子,继续加压到5 GPa时小分子连接在一起形成以碳为骨架的大分子,随着压力的不断增加碳链不断增长,然后形成环状结构,最后形成链状与环状结构相连的无序聚合物,当压力达到15 GPa时,聚合物的主要骨架就基本形成。随着压力的继续增加,则聚合物骨架不再变化。H2在聚合过程中起到了如下重要作用:首先,H2通过参与反应形成小分子来降低聚合条件;其次,在降压过程中H2通过钝化作用来保持聚合物结构的稳定;最后,通过掺杂H2来合成材料是一种有效的手段。3.在CO中掺杂N2和NH3能够有效降低聚合反应时的压力,掺入杂质以后开始聚合时的压力为5 GPa。以上研究及成果加深了对以CO为主要前驱物,通过高压手段制备高含能材料微观过程的理解。
其他文献
本文利用塔克拉玛干沙漠腹地2017年7月GPS加密探空资料、风廓线风场数据及地面气象要素,分析了沙漠夏季夜间稳定边界层结构变化特征、天气个例位温及风速垂直廓线的特征变化;
金属卤化物钙钛矿(MHPs)因其出色的光电性能、低成本和高转换效率(PCE)而成为光伏光电材料领域的研究热点,在太阳能电池、LED、激光器和光催化中有着广泛的应用。在短时间内,钙钛矿太阳能电池的PCE从最初报告的3.8%已提升到23%以上。但是,这些材料的大规模使用受到铅等有毒重金属的影响以及在环境条件下长期稳定性的限制。为避免这些问题,A_3M_2X_9型无铅金属卤化物类钙钛矿材料因其具有独特的
随着经济的高速发展、化石燃料的过度消耗以及环境污染的不断加剧,人们对清洁、高效和可持续储能装置的需求不断增长。在各种电化学储能技术中,超级电容器由于功率密度高、充放电速率快、循环寿命长和环境友好等优点具有广泛的应用前景。制备孔隙度丰富和氧化还原活性高的电极材料具有十分重要的意义。金属有机框架材料(MOFs)是由有机配体和金属离子组成的一类多孔晶体材料。由于其具有孔径可调、比表面积大和结构多样等优点
半导体纳米晶的光学性质在近些年来引起了相当大的关注。部分纳米晶已经成功应用在激光、荧光生物医学探针等量子器件上。CdSe纳米晶因其窄带隙和卓越的光学性质,成为广泛研究的半导体纳米晶。同时核壳结构的半导体纳米晶也是材料领域研究的主要对象。研究者发现在CdSe核表面外延生长CdS壳层可以显著提高其光致发光效率以及化学和热稳定性。由于压力可以改变纳米晶的电子和晶体结构,利用高压装置对核壳半导体纳米晶进行
NO_2近些年来成为困扰人类的一种有害气体,过量的NO_2是导致酸雨、地表水酸化和富营养化的重要原因。半导体气敏传感器则是检测大气中NO_2浓度的重要手段之一,备受研究人员青睐,而半导体气敏传感器的核心就是制作传感器的半导体材料。ZnSe是一种非常重要的宽禁带Ⅱ-Ⅵ族半导体材料,在可见光(400700 nm)范围内的光电催化及光电转化特性性能十分优异,在激光、全天候光学装置、红外热成像、高分辨率的
关键词识别指在连续语音流中检测出预定义关键词。由于深度神经网络在语音识别方面有着突破性发展,近年来关键词识别的研究主要是基于语音识别展开的。这类方法首先使用声学
全球变暖背景下,城市热岛效应(UHI)对居民生活和健康的威胁进一步扩大。在夏季,长期居住在稳定的热岛中心的居民具有极高热相关健康风险。定义连续多年夏季受热岛影响,且面积较大、连通性较好的高温中心为长期热岛。以北京六环以内区域为例,利用三期Landsat数据,结合形态学空间格局分析和叠加分析等方法,识别了北京市2011-2017年的长期热岛空间分布并依据土地利用情况对其进行类型划分。通过景观组分与地
全球气候变化及快速城市化加剧极端事件的发生频率,高温热浪作为其中的典型效应,对城市生态环境及居民健康造成极大威胁。由于城市内部热环境风险并非均质分布,依据城市内部功能类型及人类活动进行针对性研究,对更精细尺度上气候变化适应指引实践意义重大。本文以北京市为例,结合POI数据、手机信令数据划分城市功能区,基于职住功能视角,识别与人类活动最为频繁与居民日常生活最为密切相关的居住、工业、办公功能。通过“暴
近年来,人们一直致力于探索新材料和新能源的开发,以满足当今社会的高速发展和可持续发展的需求。金属二氮烯氮化物因同时具有含能性质和导电性质而具有十分广阔的应用前景。然而,我国关于金属二氮烯氮化物的研究还处于起步阶段,还有很多问题需要研究探索,比如金属二氮烯氮化物的合成制备、高压下的相变规律、还有导电机理等等。本论文在课题组前期对碱土金属叠氮化物的研究基础上,在高温高压的条件下,通过控制碱土金属叠氮化
近年来,随着自动语音识别(ASR)技术水平的提高,从ASR系统输出得到的口语转录文本的处理研究,也随之受到了广泛的关注。由于口语转录文本并不是书面化的文本,从而会带来一系列严重的问题。一方面,口语转录文本是由ASR系统输出生成的一串字符流组成的,缺少标点符号和句子边界信息。这就是导致了读者在阅读转录文本时,很难找到一个句子的起点和终点,从而大大增加了句子语义的理解难度。另一方面,口语转录文本包含了