论文部分内容阅读
城市道路交通环境复杂多变,车辆之间交通冲突频繁,错误的驾驶行为将导致冲突进一步加剧,引发交通事故,由于近年来城市交通流中驾驶员非职业化、车流密集化趋势日益明显,使得城市交通环境下的驾驶行为研究显得尤为重要。而驾驶意图是驾驶行为的内在状态,驾驶意图辨识是驾驶行为预测的前提,因此,通过辨识城市交通环境下的驾驶意图,进而预测驾驶行为,对于提高驾驶安全性和改善交通环境具有重要的意义。本文在分析总结国内外现有的关于驾驶行为预测以及意图辨识成果的基础上,以驾驶意图辨识为桥梁,预测城市道路交通环境驾驶员在行车过程中的驾驶行为。通过深入分析和研究驾驶员在跟驰、超车以及换道(包括左换道、右换道)行为及意图阶段视觉特征表征参数的变化规律,选取典型视觉特性表征参数表征驾驶员行为与意图,建立驾驶行为预测模型,提出了基于驾驶员视觉特性的驾驶行为预测方法,分析了驾驶行为表征参数及驾驶意图时窗对驾驶行为预测的影响,从理论层面和技术层面促进了驾驶行为预警系统的实用化。论文具体研究工作如下:1、城市交通环境驾驶行为与驾驶意图分析。首先,通过分析城市交通环境下的驾驶意图及驾驶行为形成机理,将城市环境下的驾驶行为分为跟驰、超车、左换道以及右换道4类;然后,通过分析驾驶行为与驾驶意图的关系,确定基于驾驶意图辨识的驾驶行为预测方法。以驾驶行为预测为目的,分析驾驶意图及驾驶行为的影响因素,确定表征驾驶意图和行为的视觉特性参数,为驾驶行为试验方案的设计以及驾驶行为预测参数的选取奠定基础。2、试验方案设计和数据采集。首先,设计了实车道路试验方案,包括试验设备安装和调试、试验人员和路线选取、试验过程设计等。其次,进行道路试验,实时采集驾驶员行为及视觉特性数据;再次,应用拉依达准则,对异常数据进行剔除,并通过试验录像分析驾驶员操作行为,选取驾驶行为样本;最后,选取合理的数据驾驶行为预测数据,本文分别以4s、4.5s及5s作为驾驶意图时窗选取用于驾驶行为预测的训练样本数据库和评价样本数据库,为建立驾驶行为预测模型提供了数据支撑。3、基于驾驶员视线点分布规律的驾驶员视野平面划分方法研究。首先,运用k均值聚类,分别选取k6、 k7以及k8,将驾驶员的视线点进行动态聚类。其次,运用拉依达准则将聚类后的驾驶员视线点坐标进行异常数据剔除,剔除偏离各区域的异常视线点;然后,将多次聚类后的驾驶员视线点投影到车辆前挡风玻璃中,通过对比分析各次聚类的优缺点,确定最终的聚类结果;最后,基于视线点分布将驾驶员的视野平面划分为正前方车道、左侧车道、右侧车道、左侧车外后视镜、右侧车外后视镜、车内后视镜和车内仪表盘七个区域。4、不同驾驶行为下驾驶员视觉表征参数变化规律分析。以试验数据为基础,结合试验录像,从注视、扫视和头部转动三方面,深入分析不同驾驶行为对应的驾驶员眼睛及头部运动特性表征参数的变化规律,并运用Nemenyi秩和检验方法检验不同驾驶行为过程中各驾驶员视觉特性表征参数的差异性,最终确定能够表征驾驶员驾驶行为的视觉及头部运动指标。5、驾驶行为预测模型的建立。首先,从隐马尔科夫理论的基本思想、基本算法以及分类等方面阐述了HMM的建模思想;然后,根据论文研究目的及要求,选取建模所需的驾驶行为视觉表征参数,从所有驾驶行为中选取100个样本作为训练样本进行模型训练,基于HMM算法建立驾驶行为预测模型;利用相关性分析,对所选取的参数进行简化,最终选取注视次数、扫视持续时间、扫视速度、注视点转移概率以及头部转角为建模参数。6、模型评价及预测效果分析。首先,通过计算模型预测准确率,分析了模型的效果,结果表明,以4.5s作为驾驶意图时窗选取驾驶行为预测样本时,预测模型的准确率达到85%以上;其次,以4s和5s作为驾驶意图时窗选取驾驶行为预测样本,研究了样本选取对驾驶行为预测结果的影响,以危险驾驶行为预警为目的,以4.5s作为驾驶意图时窗选取样本数据进行了驾驶行为预测。论文以驾驶员视觉特性为基础,以隐马尔科夫理论为手段,深入系统的研究了城市道路交通中驾驶员驾驶行为预测及意图辨识面临的关键技术问题。通过分析驾驶行为及其驾驶意图形成机理和影响因素,选取了城市道路行车过程中有效表征驾驶员行为的视觉参数,建立了驾驶行为预测模型。论文研究成果可为危险驾驶行为预警及安全驾驶辅助系统的开发提供一定的理论基础和技术支持。