基于临床视觉注意力区域的眼科图像质量评价与疾病分类

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:Q_Q
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The ophthalmic images classification problem is one of the topics of computer-aided medicine,reasonably adding prior knowledge can significantly improve the performance of the classification model.A common way to add prior knowledge is to use a mask to guide the attention of the neural network.For example,in the disease classification task,we can weight the lesion masks to neural network feature maps in order to strengthen neural network attention to lesions.Generally,the manual annotation cost of lesion masks is relatively high due to the complex morphology characteristic of the lesions.The specific works of this dissertation are as follows:(1)In order to reduce the cost of annotation,this dissertation uses anatomical structure masks to replace lesion or image quality abnormal masks.In the process of using the mask to guide the neural network attention,the forward gradient activation mapping module is designed to obtain the attention area of the neural network.After that a new mechanism is proposed,the proposed mechanism uses dual thresholds to constrain the angle range between the "neural network attention region" vector and the "anatomical structure mask" vector,update the single-path gradients of vectors which don’t meet the angle range.In order to verify the effect of the above mechanism,this dissertation designs two verification tasks:Verification task Ⅰ: This dissertation designs a verification task that the "regional image quality" assessment of the bulbar conjunctiva and builds a large dataset about the task.This task utilizes the "regional image quality" assessment replaces the traditional image quality assessment in order to “accept”more images that meet the image quality.In the construction of the data set,this dissertation designs multiple auxiliary tasks to guide the judgment of the evaluation of the "regional image quality" of the bulbar conjunctiva.Experiments show that the auxiliary tasks can effectively improve the classification results of "regional image quality" of the bulbar conjunctiva compared with other classification networks.Verification task Ⅱ: This dissertation designs a retinal macular disease classification task based on two modal volume data.This task directly classifies volume data in order to strengthen the utilization of three-dimensional information,and combines two modal data to strengthen the neural network comprehension of lesion features.Moreover,this dissertation proposes a shallow feature fusion framework,in this framework several feature fusion modules are added to different positions of the neural network feature extractor in order to combine shallow features and strengthen non-linear expression of fusion features.In the feature fusion modules,a sub-structure is designed to strengthen abstract semantic expression ability of the shallow features.Experiments show that the feature fusion framework and modules proposed in this dissertation have a better classification effect than other feature fusion architectures on this task.After adding mask information,compared with other mask guidance methods,the mask guidance mechanism proposed in this dissertation can accurately guide the network to focus on a wide range of anatomical structure regions in the above two verification tasks,and have better classification effect.(2)A system is designed for the above work,which supports the image category labeling,classification model training,metrics analysis of the test images,and visualization of neural network attention region.
其他文献
机械制造行业是我国制造业的重要组成部分,对我国经济发展具有重要的支撑和推动作用。与制造强国相比,我国的机械加工方式较为粗犷,资源利用率低,环境污染严重。为响应可持续发展号召,改善我国生态水平,绿色制造理念得到逐步推广,传统制造模式亟待转型升级。目前,传统工艺与环境负载间的关联尚不明确,改进传统工艺存在较大难度。为解决上述问题,本文针对机械加工过程中产生的环境排放污染物开发相应的检测系统,研究机床加
近年来,在各类量了点材料中,以CsPbX3(X=Cl,Br,I)为代表的全无机钙钛矿量子点因其优异的光电性能(如高的载流子迁移率、高的发光效率、可调节的发射波长等)而受到了人们的广泛关注,并已成为光电材料领域的研究热点之一。然而,其在大气环境中的稳定性较差。氧气、光照、水分等囚素均能直接破坏量子点,影响量子点的发光性能。尽管目前已有大量报道采用表面包覆策略提升钙钛矿量子点的稳定性,但这一策略仍然存
地物的电磁散射特性一直以来在遥感、探测、反隐身等领域具有重要的应用价值。地物的种类多样,且随环境的差异分布也呈现出多样性。随着计算场景的扩大,理论模型的构建变得复杂,计算量也会显著上升,在这种情况下,现有计算平台和建模能力不足以模拟并准确地得到大场景环境中典型地物的电磁散射特性,导致理论模型与实验测量数据相差甚远。因此急需建立一种高效的全波电磁分析方法,从而能够精确、高效地分析典型地物的电磁散射特
研究报道,添加适量Y元素会显著提高ZrCuAl金属玻璃体系的非晶形成能力。差热扫描量热分析显示具有最优玻璃形成能力Zr42Cu46Al7Y5金属玻璃合金成分在超过冷液相区有明显的异常放热峰,暗示会发生液态相变。原位中子衍射和同步辐射高能X射线衍射实验发现Zr44Cu46Al7Y3和Zr42Cu46Al7Y5金属玻璃相比于没有结构异常变化的参考合金成分Zr47Cu46Al7,它们在被加热到结晶点之前
随着经济的快速发展和城市化的不断推进,越来越多大型建筑场馆的出现在给人们生活带来许多便利的同时,也埋藏了不少的安全隐患。如何在意外险情发生情况下,帮助人群脱离危险建筑,或是协助消防人员在室内建筑实施抢险救灾时获取自身位置信息,成为了亟待解决的一个问题。目前,市面上的室内定位解决方案多针对2D定位,即完成同一平面的定位,无法切实满足上述室内定位的需求。而面向3D定位的解决方案往往需要和基础设施提供的
基于线阵相机交汇的立靶密集度测试系统由于其结构简单,使用方便,测量精度高等优点,在武器测试等领域中得到了越来越广泛的应用。随着新型武器的精度和射速等性能逐步提升,对武器测试系统的性能要求也越来越高。目前限制线阵相机交汇立靶密集度测试系统精度的主要因素包括系统参数测量误差、背景光源不理想,以及外界各种干扰导致的误识别、漏识别等问题。为此,本课题在对影响系统测量精度的主要误差来源进行深入分析的基础上,
光学元件的表面缺陷检测是超精密光学制造领域的重要环节。在众多光学元件表面缺陷检测技术中,显微成像法因分辨率较高的优势而被广泛采用。然而,由于光学系统极限分辨率的存在,当缺陷尺寸达到亚微米量级,传统显微成像法将难以实现光学元件表面缺陷的定量检测。近年来,超分辨显微成像技术的快速发展使光学显微衍射极限问题的研究迎来了新契机。其中,结构光照明显微技术(Structured Illumination Mi
配电网中光伏(Photovoltaic,PV)比例不断增加,PV并网加剧了配电网运行工况的不确定性,储能系统(Energy storage system,ESS)是配电网的重要组成部分,合理的光伏/储能配置方法不仅可以提高配电网运行的经济效益,而且对维护配电网频率稳定,提升电能质量具有重要意义。分布/集中式储能对PV有功出力的调节能力存在差异,光储容量及选址位置也会影响配电网网损及电能质量,有必要
为了推动我国的大量退役废旧弹药的资源化利用技术发展,解决废弃双基发射药无法直接制备灌注炸药的难题,论文首先采用了超临界二氧化碳间歇发泡技术对废弃双迫发射药进行发泡处理,制备得到具有多泡孔结构的发泡双迫发射药。通过改变饱和过程中的压力和时间,研究了超临界二氧化碳在双迫发射药中的溶解度、发泡工艺对发泡双迫发射药能量、泡孔形貌、有效成分的影响。实验结果表明,随着饱和压力的增加,二氧化碳在双迫药中的溶解度
随着信息技术的发展,属性图作为一种描述实体间复杂关系的数据在现实世界中无处不在,如社交网络、引文网络、蛋白质相互作用网络等等。针对属性图的社区检测研究作为属性图数据挖掘领域的基本任务,旨在发现复杂图结构中由紧密连接的结点构成的群组,即社区。其难点在于如何有效融合属性和拓扑空间的异构信息,学习结点的表示,提升社区检测算法的性能。图卷积网络(Graph Convolutional Networks,G