论文部分内容阅读
在80年代,空间遥感技术得到了飞跃性的发展,出现了一种新型的遥感器成像光谱仪。它是一种既能够接收地物目标的影像又能够接收观测目标的光谱组成的遥感器,是一种性能完备、谱像合一的遥感器,本身获得的数据具有波段多、光谱分辨率高等特点。空间紫外光学遥感技术是除可见、近红外、热红外和微波遥感以外的一个具有突出优势的遥感领域。随着遥感技术的发展,大气遥感被广泛应用于气象卫星、空间实验室、飞机和地面气象观测。随着人类对大气遥感研究的深入,空间电离层高层大气对人类的意义越来越重要,高层大气遥感成为了地球空间科学所关注的重点。为此我们国家也开展了对这一技术的研究,开展了地球临边成像光谱仪这种新型的空间光学遥感仪器的科研工作。为了保证临边成像光谱仪在星载轨道上的正常运行,热控分系统的合理可靠和有效是整个工程设计的一个重要任务。在空间环境中,温度成为了影响光学系统成像质量的主要影响源,如何采取简单、有效的热控措施,保证光谱仪在空间热环境下具有可靠的光学性能和成像质量是首要任务。本文以正在研制的XX-X临边成像光谱仪为研究对象,开展热控技术研究工作,从系统工程观点出发,针对光谱仪系统整个应用生命周期,根据光谱仪的结构特点和飞行任务的要求,以及飞行环境的约束,提出了合理的热设计方案,提出针对紫外波段空间遥感器的热控需求。论文简要概述了成像光谱仪和紫外光学遥感器的发展现状及趋势,分析了紫外光学遥感器采用热控技术的必要性,结合国内外紫外光学遥感器热控技术,总结了紫外光学遥感器热控技术的特点。论文从临边光谱成像仪的结构特点、工作环境和温度场分布的影响因素入手,分析XX-X紫外临边成像光谱仪的热控需求,以及热控任务,总结了紫外临边成像光谱仪热控制技术的难点,提出了详细的热设计方案,包括前向光谱仪、环形成像仪、紫外电控箱等重要部件的热设计。论文建立了紫外临边成像光谱仪的有限元热模型,对热控系统进行了热分析。通过对光谱仪的分析计算结果,对光谱仪的热设计进行优化修改,最终确定紫外临边成像光谱仪在轻量化、小型化的工程设计特点下的热设计方案。论文根据成像光谱仪各个组成部分的热源分布情况以及所处环境条件,确定高低温极端工况,利用IDEAS有限元软件对高低温工况各个阶段进行了仿真计算,分析结果表明热控方案满足系统要求。论文对光谱仪进行热光学试验和热真空平衡试验,证明了理论分析的准确性和温控指标的合理性,并获得了稳定、清晰的高质量图像。试验结果表明,热控方案正确、有效,满足了热控指标。紫外临边成像光谱仪热控制技术的研究,为今后的紫外多波段空间光学遥感器的研究发展奠定了技术基础。