论文部分内容阅读
论文针对时间步进算法数值不稳定性和计算效率低下问题,开展随机粗糙面与目标复合散射时域积分方程稳定算法和快速混合算法研究。为了改善数值算法的稳定性,利用二阶中心差分公式计算磁矢势二阶导数项以减少数值误差,得到了二维目标、粗糙面以及目标与粗糙面电磁散射稳定算法。为了提高数值计算效率,给出了粗糙面与目标复合电磁散射的TDIE–TDKA混合方法。研究结果表明:TDIE–TDKA混合方法不仅对粗糙海面与漂浮舰船目标复合电磁散射场景有效,对粗糙海面与上方多目标复合电磁散射计算也同样适用。为了进一步提高数值计算效率,提出了粗糙面与上方目标复合电磁散射多区域TDIE算法。论文主要研究成果如下:基于磁矢势一阶导数的后向差分公式对时域电场积分方程进行显式时间步进求解,计算了二维目标、一维粗糙面、二维目标与一维粗糙面复合模型的瞬态电流。讨论了二维目标尺寸、时间步长、剖分尺度、粗糙面的粗糙度、目标与粗糙表面距离对瞬态电流稳定性的影响。结果表明,时间步越长、目标尺寸越大、粗糙表面越光滑,瞬态电流越稳定;对于粗糙面与目标复合模型,瞬态电流不稳定性急剧增加,并且目标尺寸越小、目标与粗糙面距离越近,瞬态电流越不稳定。为了改善时域积分方程的数值稳定性,利用二阶中心差分公式计算磁矢势项。分别对二维目标,一维粗糙面以及目标与粗糙面复合模型开展算法的稳定性研究。数值结果表明,对于单独目标、单独粗糙面以及粗糙面与目标复合模型都能得到更加稳定的数值结果。给出了粗糙海面与舰船目标复合电磁散射的TDIE–TDKA混合算法。该方法将粗糙海面与舰船目标复合模型划分为TDIE和TDKA区域。TDIE区域包括舰船目标及其近邻海面,剩余电大尺寸粗糙海面为TDKA区域。求解过程中考虑了两个区域表面电流的相互耦合作用以保障混合算法的计算精度。与传统TDIE算法相比较,TDIE-TDKA混合算法能够大大提高数值计算效率。利用混合算法研究了海面上方风速、舰船目标尺寸、吃水深度对瞬态散射场的影响。建立了粗糙海面与上方多目标复合电磁散射TDIE-TDKA混合算法理论模型。将电大尺寸粗糙海面划分为TDKA区域,将粗糙面上方每一个目标视为一个TDIE区域。考虑到TDIE区域之间以及TDIE区域与TDKA区域之间的耦合,得到了求解粗糙海面与其上方多目标复合瞬态散射矩阵方程。数值结果表明TDIE-TDKA混合算法对于粗糙面与上方多目标复合模型同样适用。此外,分析讨论了海面上方目标数量、目标尺寸、目标高度、目标间距以及海面上方风速对复合模型瞬态散射场的影响。为了进一步提高数值计算效率,提出了粗糙面与其上方目标复合电磁散射的多区域TDIE算法。在多区域模型中,根据锥形脉冲波强度沿粗糙表面不均匀分布的特点,将粗糙面分成多个区域;粗糙面中心区域入射波强度较大,该区域分配为主区域,主区域包括粗糙面上方目标。入射波强度较小的区域分配为辅助区域。主区域瞬态散射场通过传统TDIE方法计算,而辅助区域瞬态散射场通过TDKA方法计算。为了保障计算的精度,求解过程中考虑了各区域之间相互耦合作用。与TDIE-TDKA混合算法相比较,多区域TDIE算法计算效率得到进一步提升。