基于实际道路工况的燃料电池混合动力公交车设计与仿真研究

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:zjkghost10
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着石油资源的使用越来越多,资源短缺和环境污染的问题越来越受到社会的重视,使其成为现代社会必须面对的严重问题之一。为了解决能源短缺和环境污染的问题,新能源汽车越来越受人们的青睐。燃料电池混合动力汽车具有零排放、高效率的特点,成为解决上述问题重要思路之一。本研究基于当前重型商用车的发展趋势和节能减排的要求,具体通过分析混合动力公交车的研究进展,确定燃料电池混合动力公交车为研究对象,重点研究整车动力系统选型和匹配、能量管理策略、整车仿真和关键部件参数比较等,并主要开展了以下几方面的工作:(1)首先基于北京公交车远程监控平台收集了公交车典型路线上的工况数据,并采用宏观统计和短行程切割的方法进行了工况特征分析。(2)根据法规规定和实际道路工况的统计特征,确定了燃料电池混合动力公交车的整车设计指标,通过对比分析确定了FC+B(燃料电池+动力电池)的动力系统拓扑结构,并对关键部件进行了选型和匹配计算。(3)对比分析了当前主流的能量管理策略,基于MATLAB\Simulink环境搭建了带有模糊控制的功率跟随式能量管理策略。(4)基于AVL Cruise平台搭建了燃料电池混合动力公交车的整车模型,分别使用CCBC(中国城市公交车循环工况)、CHTC-B(中国工况-城市公交车工况)和实际道路工况进行了仿真分析,研究了不同工况下动力电池SOC状态、驱动电机工作效率和燃料电池输出功率等内容,并结合实际道路工况对关键部件进行了优化分析。基于以上的工作内容和研究的结果,得出以下结论:(1)相对于法规工况,车辆在实际道路工况下,车辆最高车速在85km/h左右,平均车速在30km/h,运行时间大于5h,具有明显的行驶速度高、平均车速低、运行时间长的特点;(2)仿真结果表明,与法规工况相比,车辆实际工况的变化更加剧烈,驱动电机工作点覆盖范围广,随着工况变化的剧烈程度氢耗率升高,动力电池SOC变化范围扩大,制动能量回收比超过9%;
其他文献
快速路作为许多大型或者特大型城市道路网的重要组成部分,具有速度快且通行能力大的优势。但是与日俱增的交通压力使得一些城市的快速路拥堵愈加严重,尤其是在通勤等交通需求较高的时段。多匝道协调控制是抑制快速路拥堵的有效手段,这是因为快速路匝道间距短,主线速度限制和单匝道流量调节对于快速路拥堵的控制效果有限。但是现有的多匝道协调控制方法较少涉及控制信号施加范围优化及确定问题,较少考虑“匝道上不设信号灯,流量
铸铁是一种重要的工程材料。铸铁的结晶过程比较复杂,人们仍未完全掌握其凝固过程,实际生产中经常因工艺设置不当导致铸件中出现冶金缺陷。为了控制铸件的组织和性能,减少废品,需要对铸铁的结晶过程进行更深一步的研究。在实际情况下,铸铁在非平衡条件下凝固,其中共晶结晶是铸铁凝固中最重要的阶段,但生产过程中工艺条件的变化会造成铸铁共晶点的移动,直接影响铸铁的组织。本课题基于热分析技术,找到了一种确定非平衡凝固条
现如今全球水资源匮乏,水资源的处理再利用显得尤为重要,工业领域和生活中均会产生含油废水,含油废水处理问题亟待解决。近年来,用于处理含油废水的超亲水-水下超疏油多孔膜受到广大学者的青睐。聚乙烯-乙烯醇共聚物(EVAL)良好的亲水性和稳定的性质使其成为膜材料的选择之一,普兰尼克(Pluronic)F127亲水性添加剂因其良好的亲水性和致孔剂作用引起广泛关注。基于此,本文旨在通过浸没凝胶法制备超亲水-水
随着我国交通运输体系的迅猛发展,道路养护和修善的问题日益受到关注。阳离子沥青乳液凭借其施工温度低、低VOC、成本低廉和优异的粘结性等优点被广泛应用于道路施工过程中,而决定沥青乳液品质的关键因素是乳化剂。因此,设计、合成新型阳离子沥青乳化剂一直是高性能沥青乳液的研究热点。本文首先合成了一种含有环氧官能团的季铵盐中间体,然后使用该中间体对两种天然生物大分子进行接枝改性,成功制备了两种改性大分子阳离子沥
膜蒸馏(Membrane Distillation,MD)是一种将传统蒸馏方法与膜分离技术相结合的分离技术,在海水淡化、盐溶液浓缩结晶、纯水制备等工艺中具有较大的应用前景。但是潜在的膜污染问题会降低膜蒸馏的通量及效率,其中有机污染物对膜的污染是阻碍膜蒸馏技术在实际生产中应用的重要因素之一。金属有机框架(Metal Organic Frameworks,MOFs)是由无机金属中心与桥联的有机配体通过
有机磷农药作为复杂污染物的代表,在环境中广泛分布且对环境和人类健康危害严重。传统降解方式对反应条件要求苛刻,且单一方式难以彻底降解。作为绿色可持续催化的典型代表,酶催化和光催化在近年来得到了越来越多的关注。但生物酶和普通光催化剂难以回收、成本高昂、对复杂污染物降解效果较差等缺点限制了其广泛应用。本课题通过设计具有光催化能力、性质稳定、生物相容性好的载体,用于有机磷水解酶(OPH)的成功固定化,成功
学位
合成芳胺类化合物主要通过偶联反应进行C-N键的建立,其中Buchwald-Hartwig交叉偶联反应是构建C-N键的重要方法。但是这类偶联反应大部分存在许多缺点,如催化剂用量大、配体结构复杂且较难合成等。虽然已经有许多催化效率高且选择性好的催化体系,但一些催化体系对水和空气等比较敏感因而不利于反应进行。因此制备选择性高、毒性低、能循环使用的催化体系,是C-N偶联反应的发展趋势。本文依Bippy P
从煤焦油中分离的混合二甲酚实用价值有限,通过催化加氢脱烷基方法将其转化为苯酚和甲酚等用途更为广泛的化工产品,是实现二甲酚综合利用的有效方法。微孔沸石具有能发生脱烷基反应的强酸位点,但狭小的孔道限制了反应物与产物的有效扩散,造成二次裂解,使得产物选择性降低。Al-MCM-41分子筛具有较大孔径结构有利于反应物的扩散,提高产物选择性,但其酸性较弱导致催化脱甲基反应活性较低。复合分子筛由两种或多种分子筛
在新零售背景下,无人货架上商品种类繁多、背景复杂且易受光照等外界因素干扰,顾客手持商品时手部或身体也会对商品关键信息形成遮挡,使得自然场景中仅采用图像识别算法在精度和速度上不能满足无人货架应用需求。针对无人货架实际应用场景的特性,本文在深度学习及卷积神经网络框架下,基于人体关节点定位算法与图像分类算法对该场景下的手持商品进行识别。其中人体关节点定位算法能准确定位持有商品手部的相关关节点,而图像分类