视频传输下无线Mesh网络中基于QoE的分簇路由协议的研究

来源 :辽宁大学 | 被引量 : 0次 | 上传用户:danaxiao99
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着时代的不断迈进,科技逐渐的发达,网络给人们建立起了一条又一条的“高速公路”,人们的日常生活、工作以及学习都越来越离不开网络。随着无线网络为了提供更优质的服务向下一代发展,无线Mesh网络(WMN,Wireless Mesh Network)作为其中一种关键技术越发受到研究人员和设计者的关注,已经成为宽带家庭网络、社区网络和企业网络等许多应用的关键技术。传统的无线网络深受互联网连接“最后一公里”的问题所困扰,无线Mesh网络的出现能够有效的解决这一问题。因此,近年来无线Mesh网络已经在各大领域得到了广泛的应用。现有的关于无线Mesh网络的研究大多都集中在服务质量(QoS,Quality of Service)上,作为一种评价网络中的丢包率、延迟、抖动等参数的技术指标,在网络技术层面的评价中,QoS有着良好的表现。但是,对于网络信息服务商来说,技术层面的性能是一种相对客观的评价指标,并不能明显的体现出用户的满意程度,他们需要一种能够直接体现出用户对于所提供的服务的满意程度的指标,因此,与QoS相比较来说,QoE(Quality of Experience)是一种更符合网络信息提供商要求的评价指标,它综合考虑了用户层面、环境层面以及服务层面的影响因素,能够更加直接的反应出用户对网络的认可度。本文针对现如今受众广泛的视频流的QoE问题,分别从影响QoE值的两方面,即视频失真以及视频响应时间入手,提出了视频传输下无线Mesh网络中基于QoE的分簇路由协议。该协议共包含有两个子协议,即簇间路由协议与簇内路由协议。论文的主要研究如下:(1)提出了基于排序蚁群算法的簇间路由协议,针对视频的失真问题,通过借鉴现存的分簇算法思想,将系统中的Mesh路由器分成不同的簇。为了更好的评价用户体验质量,选用G.1070模型作为QoE的评价建模,并在簇间路由协议中通过运用排序蚁群算法来选择满足该模型约束条件的最优路径,通过将视频以最优路径传输来提高视频的QoE值。算法中使用精英蚂蚁收敛的思想加快全局收敛速度,降低视频传输所需的时间,并且降低了算法复杂度。同时,添加了多路径传输,该方法在降低算法复杂度的基础上还能够保证数据传输的可靠性。(2)提出了基于改进的MORE(MAC-independent Opportunistic Routing&Encoding)协议的簇内路由协议,该协议以降低视频响应时间为目的,以此来提高用户服务体验质量。网络编码相较于传统的“储存-转发”式结构能够有效的减少传输次数,因此,本协议使用时延最小化网路编码的编码方式,使得每次传输的编码包所能定位的用户数都为所有用户,对于整个系统来说能够降低所有用户接收数据包的总时间,提高了系统整体的QoE值。同时,为了更好的降低视频传输的时延,将原本MORE协议中源和中继节点持续重传等待目的节点确认的机制改为拒绝确认机制,以减少数据包传递的等待时间的方法来降低整个系统的时延。本文通过MATLAB仿真软件进行仿真实验,在QoE的数值以及网络的时延方面进行对比。实验表明,视频传输下无线Mesh网络中基于QoE的分簇路由协议能够有效的提高用户体验质量,并且能够降低网络的时延,有效地提高了用户对于网络服务体验的满意度。
其他文献
网络中的数据量迅速增长,如何挖掘并利用网络数据中有用的信息是当前自然语言处理领域关注的重点问题。网络中的数据通常是以自然语言的形式存在,但计算机处理自然语言时只能获取到自然语言的一些表面信息而不能对其进行更高层次的语义分析,因此不能有效挖掘到这些数据中的有用信息。知识图谱把非结构化的自然语言转换成结构化的形式,在对数据的描述方面具有特别大的优势。如果能把网络数据和知识图谱关联起来,运用知识图谱中的
近年来,随着信息技术的发展,时间序列的应用越来越广泛,如灾害监测、安全分析、金融商业等领域都包含海量带有时间属性的数据。这些数据具有规模大、类型多等特征,蕴藏着巨大的价值。因此,如何对时间序列进行精确分类,是流式数据事件分析和数据挖掘的基础,也是数据流领域研究的重点和难点。时间序列数据是按某一给定采样频率,对某一过程进行监测得到的一段实值数据波形,随时间戳变化连续记录,不受系统环境等因素影响。时间
信息时代产生了海量数据,这些数据中潜藏着巨大的信息价值,对人们的生活、工作起着愈发重要的作用。但在实际应用中,数据缺失现象在工业、医学、商业和科学研究等诸多领域中普遍存在,存在不完整数据集。如何使缺失数据充分的为人所用,挖掘出缺失数据中潜在的有价值的信息对于我们来说十分重要。若缺失值处理不当会在数据聚类中造成较大误差或错误结果,因此不完整数据聚类问题已经成为不完整数据分析中的一个重点。首先,为了解
随着互联网技术的不断进步发展,个性化推荐技术逐渐成为计算机领域的研究热点。随着教育的重要性日益提高以及互联网和大数据等技术的发展,越来越多的研究人员将大数据研究应用于教育领域。在教育大数据应用中,对新用户的教育资源推荐易导致信息量不足,从而产生冷启动推荐问题。冷启动推荐问题是指新用户刚刚进入系统,无任何历史行为,无法依据历史数据获得用户偏好,从而给推荐带来巨大挑战。如何进行冷启动推荐,同时保证推荐
近年来,随着通信、网络、集成电路领域的高速发展,对于数据的传输量和传输速度都有了更高的要求。但传统接口电路受技术所限,已经无法满足高速信号传输的需求。为解决这一问题,低压差分信号(Low Voltage Differential Signaling,LVDS)接口技术和电流模逻辑(Current Mode Logic,CML)接口技术应运而生。本文基于SMIC 180 nm CMOS工艺,分别设计
随着各种语音和视频即时消息传递方法的兴起,大屏幕,高像素和便携性已成为移动手持终端发展的主流趋势。尤其是可穿戴设备的出现,对数据传输速度,功耗和接口集成提出了更高的要求。为了降低不同模块之间通信的复杂性并使其易于集成和标准化,制造商开发了各种标准协议。其中,移动工业处理器接口(MIPI)标准由于其完整的技术和强大的适用性而被广泛用于移动手持终端显示应用中,因此具有极高的研究价值。本文以MIPI D
许多集成电路中都需要时钟信号,如本文设计的为时间-数字转换器所提供的多相位时钟信号。而对于高精度多相位时钟电路来说,一个小的抖动就有可能造成相位之间的混乱,进而扰乱后续电路的时序,因此对时钟信号质量的要求也更加严格。锁相环为时钟电路提供本振时钟信号,所以一个高杂散性能、高噪声性能的锁相环不可或缺。本文设计的亚采样锁相环,可以避免电荷泵锁相环中因电流失配等非理想因素而造成杂散性能的降低,并且因为环路
多目标跟踪是发展智能交通,智慧驾驶的关键技术。分析跟踪获得的车辆目标数量,车辆行进轨迹,能够有效提高道路监控、车流量统计、辅助驾驶和驾驶习惯分析等方面的综合管理水平。近年来,深度学习推动了计算机视觉领域的发展,学者们提出了大量基于深度神经网络的多目标跟踪方法。这类方法将网络获取的目标检测结果进行逐帧关联,以检测为基础实现多目标跟踪,提高了跟踪方法的性能。然而,车辆目标形态各异,移动速度高,且存在严
随着移动网络的快速发展,移动设备逐渐成为人们首选的网络终端设备。与此同时,安卓操作系统也逐渐成为中国市场首选的移动端操作系统。安卓操作系统的大量应用使得更多的不法人员试图攻击安卓设备来获取非法利益,这也导致了安卓恶意软件的泛滥。近年来,安卓恶意软件的逃逸技术在逐渐升级,安卓恶意软件检测的难度不断加大。面对当前移动网络安全的严峻形势,如何高效精准的检测安卓恶意软件是一个重要课题。首先,提出基于增强深
煤矿微震是在采矿过程中由岩体破裂导致的动力现象,较大能量的微震事件引起煤矿事故,进而影响煤矿生产。随着矿区规模扩大,煤矿微震灾害事故也随之增多。国内外对煤矿微震事件的监测和分析进行了大量研究,取得了一定的研究成果,但在煤矿微震监测系统下对煤矿微震事件震级计算和煤矿微震事件的判识仍需要进一步研究。微震传感器监测是监测煤矿冲击地压、瓦斯突出等灾害事故常用的监测方法,微震监测的事件震级和能量是煤矿灾害事