论文部分内容阅读
作为一种复杂的复合齿轮传动系统,行星齿轮箱具有体积小、传动比大、传动效率高等优点。它广泛应用于航空航天、远洋船舶、风力发电机和汽车发动机等众多领域。由于行星齿轮箱本身结构复杂,在运行过程中,间隙、外力、碰撞、摩擦等因素与其动态行为产生相互作用,使其偏离理想运行状态,易导致故障的发生,甚至引起灾难性事故。因此,行星齿轮箱的状态监控和故障诊断对于保障系统安全可靠运行、降低维修成本、避免重大事故具有重要的研究意义和应用价值。声发射技术(Acoustic emission,AE)作为一种高灵敏度,宽频响范围的动态无损检测技术,在故障诊断领域得到了越来越广泛的应用。与传统的故障检测技术(如振动分析和油样分析等)相比,AE在行星齿轮箱超低速运行状态和早期故障诊断方面有较明显的优势。本文以行星齿轮箱为研究对象,结合AE检测技术,围绕行星齿轮箱故障状态识别和健康监测等问题开展了相关研究。故障诊断的本质是模式识别的问题,而如何从复杂的故障信号中提取出对设备运行状态敏感、可分性好、规律性强的特征参数是关键一步。基于此,本文引入基于核熵成分分析算法(Kernel Entropy Component Analysis,KECA)的行星齿轮箱状态识别模型,并在此基础上进一步提出了改进算法(Improved Kernel Entropy Component Analysis,IKECA)。主要工作如下:1)针对行星齿轮箱AE信号中难以避免会混有噪声,从而对其故障诊断和状态监测带来干扰的问题。首先分析了所采集AE信号中噪声的来源和成分,根据AE信号典型的非线性、非平稳和非高斯特性,以及噪声分布特点,采用小波包阈值降噪算法滤除AE信号中混有的噪声,提高信噪比。并且针对实测AE信号的特点,探究了小波基函数,分解层数,阈值,阈值函数等合适的选取方式,得到了良好的效果;2)针对从行星齿轮箱AE信号中提取的混合域高维特征数据集中存在的相关性和冗余性,会对后续的状态识别性能产生影响等问题,引入KECA算法来提取能表征设备状态的重要信息并降低维度。且在此基础上进一步提出了改进算法,该改进算法直接寻找使数据二次Renyi熵值最大的方向作为投影方向,充分挖掘嵌入高维空间中的低维敏感特征参数,从而提升了故障诊断效率和状态识别准确率。且与不同的特征提取算法作对比,通过实验验证了该改进算法的有效性和优越性。3)考虑到经IKECA算法处理后的数据还需要输入到分类器中才能完成最终状态的智能识别,本文针对行星齿轮箱故障识别的非线性,高维度和小样本等问题,研究了基于支持向量机的故障识别算法。一方面以分类准确率为指标进一步验证了IKECA算法的有效性和优越性;另一方面,在综合上述算法的基础上,将WPD-IKECA-SVM故障诊断模型用于实测AE信号的分析处理,结果表明该诊断框架具有更高的故障识别准确率和诊断效率。