论文部分内容阅读
有机无机纳米复合材料综合了有机材料的特性(韧性好、耐冲击、质量轻、易加工等)和无机材料的优点(高强度、高硬度、热稳定性、抗腐蚀和优异的光学性能等),受到了科学界越来越广泛的关注,并在许多领域已得到较好的应用。紫外光纳米复合材料既有杂化材料的高性能和新功能,又有紫外固化的环保友好性,完美结合纳米复合与紫外光固化技术的优点,大大推动涂料的发展与应用。目前,文献中有关紫外光固化纳米复合涂层的研究集中在纳米SiO2、纳米TiO2、粘土等纳米材料体系,对纳米ZrO2的应用研究较少。但纳米ZrO2具有硬度高、折光指数高、化学惰性、热稳定好等优点,是制备高力学性能涂层或光功能涂层的理想纳米填料。本文以市售纳米ZrO2粉体和非水合成纳米ZrO2晶粒为原料,通过与不同比例的活性单体、聚氨酯丙烯酸酯(PUA)低聚物及光引发剂相复合,制备纳米复合涂料。并以此为涂料体系,采用介电树脂固化监测仪(DEA)为新的在线监测手段,考察了紫外光固化纳米复合涂料的固化动力学行为,研究了纳米ZrO2粒子在完全初级粒子分散状态下,纳米复合涂层的力学性能、光学性能及热学性能,考察了改性ZrO2纳米粒子在不同活性单体及低聚物中的相行为以及纳米ZrO2粒子的涂层性能调节效率对有机基质组成的依赖性。具体研究内容及结果如下:采用市售ZrO2粉体为原料,经γ-缩水甘油醚氧丙基三甲氧基硅烷(Z-6040)改性后,与聚氨酯丙烯酸酯低聚物(UVU6219)和二缩三丙二醇二丙烯酸酯(TPGDA)等组分共混制备了紫外光固化聚氨酯/ZrO2纳米复合涂层。利用DEA系统研究了引发剂类型与用量、光强、膜厚、固化气氛、纳米ZrO2用量等因素对纳米复合涂层紫外光固化动力学的影响规律,并与在线红外光谱研究结果进行了比较。研究发现,DEA获得的离子粘度对数(Logη)-时间(t)曲线与占线红外光谱获得的双键转化率(C)-时间(t)曲线在转化率低于85%时有很好的对应关系,而在高转化率阶段(>85%),DEA具有更高的灵敏度,对于纳米复合涂料配方和固化工艺优化具有很好的使用价值。另外,由于纳米ZrO2粉体的复合导致涂层透明性下降,纳米复合涂层的光固化转化率随着纳米ZrO2用量的增加而下降。采用溶剂热合成法获得的高结晶性纳米ZrO2粒子为原料,经甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)表面修饰后,与聚氨酯丙烯酸酯低聚物(6148J-75)共混,制备纳米复合涂料。考察了纳米ZrO2晶粒改性工艺对涂层透明性以及改性纳米ZrO2用量对涂层光固化动力学、光学性能、力学性能和热学性能的影响规律。研究表明,纳米复合涂层存在从透明向不透明转变的临界ZrO2用量,即20wt%。在临界浓度以下,纳米复合涂层完全透明,纳米ZrO2粒子在涂层中完全达到初级粒子分散水平,涂层的光固化转会率随着纳米ZrO2用量的增加而增大,硬度、耐磨损和热稳定性等性能得到显著改善,折光指数最高可达1.63。但在临界ZrO2含量以上时,涂层中的纳米粒子发生团聚,涂层透明性迅速下降,各项性能急剧恶化,甚至低于纯聚氨酯涂层的性能。在前述工作基础上,进一步深入研究了MPS改性的纳米ZrO2晶粒在不同紫外光固化单体和低聚物中的分散稳定行为,并考察了相应纳米复合涂层的力学性能和光学性能。研究发现,MPS改性纳米ZrO2粒子在小分子活性剂中的分散性优于PUA低聚物中的分散性,MPS接枝量越少,纳米复合涂层的透明性越好。在TPGDA中,ZrO2添加量可以达到62wt%而保持透明。因此,涂层透明向不透明转变的临界ZrO2用量可以通过在PUA低聚物中加入活性稀释单体加以调节。性能测试表明,有机基质的力学性能越佳,则纳米ZrO2粒子对涂层力学性能的改进效率越高。另外,本文还初步探讨了TiO2溶胶作为热固性丙烯酸树脂涂层固化剂的可行性,以替代传统的异氰酸酯等毒性大的有机固化剂。该TiO2溶胶由溶胶—凝胶法制备,为网络状团簇结构。采用DEA考察了其与含羧基官能团的丙烯酸树脂的固化行为。研究初步证实了TiO2溶胶对丙烯酸树脂的固化交联能力,并且研究表明,TiO2的引入,有助于提高涂层的力学性能、热稳定性及紫外屏蔽性。为新型无毒固化剂与纳米杂化技术在双组分热固化涂层中应用开辟了新的思路。