论文部分内容阅读
近年来,随着智慧交通的飞速发展,复杂城市环境下高精度定位的需求日趋旺盛。由惯性导航系统和全球卫星导航系统构成的INS/GNSS组合导航系统能够提供连续高精度的定位导航信息,弥补单一导航系统的不足。然而在实际的复杂城市环境中,GNSS信号极易受到高楼、林荫、隧道等遮挡,传统的组合导航系统会退化为纯惯性导航推算。由于受到微机械电子系统惯性测量单元量测噪声的影响,纯惯导系统的定位精度会随误差累积而发散。因此在GNSS故障时,提高INS/GNSS组合导航系统的定位性能极具挑战性。本文着重于研究GNSS伪位置预测算法与车体自适应零速检测算法,并引入了具有共享“降噪”过程的异构多任务学习框架。具体研究工作如下:首先为了桥接GNSS中断,设计了一种改进的GNSS伪位置预测算法,它使用深度时域卷积神经网络直接找出INS数据与GNSS位置增量之间的相关性,提供了稳定、准确的虚拟GNSS位置来辅助独立的惯导系统,提高了训练效率。实验结果表明,对比LSTM和ALSTM-FCN算法,基于TCN网络改进的GNSS伪位置预测算法定位结果明显优于上述两种算法。其次,现有的大多数基于人工智能的方法并未考虑GNSS中断时复杂的停车事件,因此在车辆停车时间较长或频率较高的复杂场景下表现出较差的鲁棒性。本研究利用一维深度卷积神经网络准确地检测车辆静止模式,以进一步校正惯导系统的速度和航向。针对分类任务中遇到的正负样本与难易样本分布不均衡的问题,本文给出了优化方案。实验表明,本文设计的基于CNN网络的零速检测算法在多段GNSS信号长时间缺失且车体静止的复杂路段下,分类准确率明显优于传统的基于方差阈值的零速检测算法。最后,考虑到GNSS伪位置预测任务与车体零速检测任务之间的相关性,本研究设计了一种具有共享“降噪”过程的异构多任务学习框架,并行训练上述两个异构任务。确保了整个级联的神经网络能够联合学习到GNSS伪位置和零速更新信息,进一步提升组合导航系统在GNSS信号阻塞环境下的定位性能。本文在大量的路测数据集上对所提出的多任务学习模型进行了性能的分析与验证。在120 s GNSS信号缺失且车辆长时间静止的复杂场景下,MTL融合算法的均方根位置误差为3.794m,明显优于单一 GNSS伪位置预测器辅助的INS算法。实验结果还表明,本文所提出的MTL融合算法对车辆零速检测的准确率超过99.0%。