儿童抑郁症调查中数据缺失情形下logistic回归模型参数的最大似然估计

来源 :复旦大学 | 被引量 : 0次 | 上传用户:hxl5201314888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Because of various reasons, data missing exists in most medical surveys. Wecould not use the method to analyze such missing data as the way we handle the complete observed data. How to handle these missing data is becoming one of the focuses of the statisticians in recent years.The original method of solving this problem is the rejection of the missing data, it means only modeling and parameter estimation of the observed data. Obviously, this method will result in the losing of information of the model. Many statisticians have suggested various methods to the problem. Rubin (1974, 1976, 1978) and Little (1987)presented the basic approaches of analysis of the incomplete data. Dempster, Laird and Rubin (1977) systematically described the EM algorithm under incomplete situation. These all applied the thought of solving missing data for us.This paper is based on the data of Shanghai Children Depression Survey. The outcome of the model is missing. We intend to use aimed data to reset the data, and model the logistic regression model, present the parameter estimation method. And according to the real background of the case, modify the model, to obtain the influence of the covariance to the outcomes.
其他文献
近年来,随着投资的全球化,双币种衍生证券越来越受到投资者的青睐。它们的收益不仅依赖于某国的标的资产,而且还受到汇率变动的影响,实际收益用另一国的货币表示。根据外国标的资
为了模型化不确定计算而引入的幂domain已成为程序设计语言指称语义学研究中最重要的构造,几个经典的幂domain构造已经被广泛的研究(见[5]).C.A.Gunter在[6]中引入了混合幂do
学位
本文主要研究几类高阶非线性椭圆方程组的Liouville型定理,即非平凡解的不存在性.本质性困难是作为通常工具所使用的二阶椭圆方程的最大值原理在高阶情形不再有效.具体思路是
随机过程的重分形分析是近年来随机分形学乃至随机过程理论最为活跃的研究方向之一.可加Lévy过程源自Lévy过程的相交与自相交问题,拥有丰富而有趣的结构,是D.Khoshnevisan
本文论述了相依回归模型(SUR,m=2)参数的最优线性无偏Bayes估计和压缩主成分估计.第一部分,在XX=0的假定下,得到了SUR的最优线性无偏Bayes估计,获得了在矩阵损失下Bayes估计
函数空间上的算子理论是算子理论中非常重要的一部分.Bergman空间上的Toeplitz算子由于其与Banach代数、复分析等数学分支的密切联系和在物理学、量子力学以及控制理论等学科