微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的室温和高温性能

来源 :吉林大学 | 被引量 : 0次 | 上传用户:gonyen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与单相单一微米、单一纳米尺度陶瓷颗粒增强铝基复合材料相比,双相微纳米混杂尺度陶瓷颗粒增强铝基复合材料表现出更优异的室温拉伸性能、耐磨损性能和抗疲劳性能。在众多陶瓷颗粒增强相中,内生TiCp和TiB2p具有与α-Al晶格匹配度好,与Al基体界面结合强度高,不与Al基体反应生成有害界面产物等优点。目前,在熔体内反应法和混合盐反应法等内生法制备的双相TiCp-TiB2p增强铝基复合材料中存在易产生反应物的残留,不能有效地调控TiCp-TiB2p尺寸,TiCp-TiB2p尺寸较大(>0.5μm),且易团聚等不足,不利于TiCp-TiB2p强化效果的充分发挥。因此,探索和研究通过新的内生方法制备微纳米尺度TiCp-TiB2p增强铝基复合材料的制备技术,研究内生微纳米尺度TiCp-TiB2p对铝基复合材料室温、高温性能的影响规律及作用机制,对进一步提高铝基复合材料的室温、高温性能和拓展其工业应用范围具有重要的学术意义和实际应用价值。本文(1)首次采用Al-Ti-B4C体系燃烧合成+热压+热挤压技术制备了原位内生高质量分数微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料。研究并揭示了内生高质量分数微纳米尺度TiCp-TiB2p对Al-Cu-Mg-Si复合材料的室温强度、高温强塑性和耐磨粒磨损性能的影响规律及作用机制;(2)首次采用微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si中间合金+搅拌铸造+热挤压技术制备了微量(0.05 wt.%、0.1 wt.%)微纳米尺度(TiCp-TiB2p)/AlCu-Mg-Si复合材料。研究并揭示了微量微纳米尺度TiCp-TiB2p对Al-Cu-Mg-Si合金室温和高温拉伸性能、室温疲劳性能和高温蠕变行为的影响规律及作用机制。本文主要创新点如下:1)首次采用Al-Ti-B4C体系燃烧合成+热压+热挤压技术,成功制备出原位内生高质量分数微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料。i)发现采用Al-Ti-B4C体系原位合成TiCp和TiB2p时,随着生成的TiCp-TiB2p质量分数的增加,纳米尺度TiCp-TiB2p的数量百分比下降,亚微米尺度TiCp-TiB2p的数量百分比增加。40 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料中的纳米和亚微米尺度TiCp-TiB2p的百分比分别为3.0%和95.6%。ii)揭示出40 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的室温屈服强度和抗拉强度在本研究中最高,分别为569 MPa和704 MPa,分别比基体合金(327 MPa、466 MPa)提高了242 MPa和238 MPa,但断裂应变(2.9%)比基体合金(11.5%)降低了8.6%。复合材料室温强度提高的机制为:热错配强化、载荷传递强化、Orowan强化和更加细小的θ′析出相强化。iii)揭示出内生微纳米尺度TiCp和TiB2p同时显著提高了Al-Cu-Mg-Si复合材料的高温强度与塑性。在573 K温度下,40 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的屈服强度、抗拉强度和断裂应变分别为141 MPa、164 MPa和31.2%,分别比基体合金(88 MPa、95 MPa和25.5%)提高了60.2%、72.6%和22.4%。复合材料高温强塑性提高的机制主要为:(a)微纳米尺度TiCp和TiB2p对α-Al晶界的钉扎和对位错运动的阻碍作用;(b)更加细小的θ′析出相的强化作用。iv)揭示出在不同Al2O3砂纸粒度(40μm、23μm、13μm)和不同外加载荷(5 N、15 N、25 N)下,内生高质量分数微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的相对耐磨性比基体合金明显提高,其中40 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料在砂纸粒度13?m和外加载荷5 N下的相对耐磨性比基体合金提高了4.17倍。复合材料耐磨粒磨损性能的提高主要归因于:内生微纳米尺度TiCp和TiB2p削弱了磨粒的刺入与犁削。2)首次采用中间合金+搅拌铸造+热挤压技术成功制备出微量(0.05wt.%、0.1wt.%)微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料。i)揭示出在凝固过程中,微纳米尺度TiCp和TiB2p可以作为α-Al晶粒的有效异质形核核心,从而细化了α-Al晶粒;在热挤压和T6热处理过程中,微量微纳米TiCp-TiB2p促进了α-Al晶粒的再结晶形核,并通过钉扎晶界作用抑制了再结晶晶粒的长大。Al-Cu-Mg-Si基体合金、0.05 wt.%和0.1 wt.%(TiCp-TiB2p)/Al-CuMg-Si复合材料中细小α-Al再结晶晶粒(2.6-5.0μm)的百分比分别为29.1%、44.9%和46.0%;在T6热处理的固溶处理过程中,α-Al晶粒尺寸的减小缩短了Cu、Mg、Si原子向α-Al晶内的扩散距离,促进了Cu、Mg、Si原子在基体中的均匀分布,从而在时效处理时析出了尺寸更小,数量更多,分布更加均匀的θ′和Q′析出相。ii)揭示出微量微纳米尺度TiCp-TiB2p的加入同时提高了Al-Cu-Mg-Si合金的室温强度与塑性。0.05 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的室温屈服强度、抗拉强度和均匀延伸率分别为310 MPa、471 MPa和22.8%,分别比基体合金(278MPa、435 MPa和19.0%)提高了32 MPa、36 MPa和3.8%。复合材料室温强塑性同时提高的机制主要为:细晶强化、θ′、Q′析出相强化和纳米尺度TiCp-TiB2p的Orowan强化。iii)揭示出微量微纳米TiCp-TiB2p的加入明显提高了Al-Cu-Mg-Si基体合金的抗疲劳性能。0.1 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的疲劳极限强度为125 MPa,比Al-Cu-Mg-Si基体合金的95 MPa提高了31.6%。复合材料室温抗疲劳性能的提高主要归因于:(a)α-Al晶粒细化:一方面使晶粒取向变得更加复杂,抑制了疲劳裂纹源的萌生;另一方面使疲劳裂纹扩展路径更加曲折,从而降低了疲劳裂纹扩展速率。(b)微纳米TiCp-TiB2p和更加细小的θ′和Q′析出相阻碍了裂纹尖端位错的滑移,导致疲劳裂纹扩展速率降低。iv)揭示出微量微纳米尺度TiCp-TiB2p的加入同时明显提高了Al-Cu-Mg-Si基体合金的高温强度和塑性。在493 K下,0.1 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的屈服强度、抗拉强度和均匀延伸率分别为279 MPa、366 MPa和10.6%,分别比基体合金(255 MPa、318 MPa和8.5%)提高了24 MPa、48 MPa和2.1%。v)揭示出微量(0.05wt.%)微纳米尺度TiCp-TiB2p的加入有效地提高了Al-Cu-MgSi基体合金蠕变发生的表观激活能和门槛应力,进而提高了抗高温蠕变性能。在473 K温度和220 MPa外加应力条件下,0.05 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料发生蠕变断裂的时间(21.4h)比Al-Cu-Mg-Si基体合金发生蠕变断裂的时间(2.5h)延长了18.9h。在473 K温度和140 MPa外加应力条件下,AlCu-Mg-Si基体合金的稳态蠕变速率是0.05 wt.%(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料的7.9倍。vi)揭示出微量微纳米尺度(TiCp-TiB2p)/Al-Cu-Mg-Si复合材料高温强塑性和抗高温蠕变性能提高的机制主要为:(a)尺寸更加细小的θ′和Q′析出相的析出强化;(b)分布在晶界处的微纳米尺度TiCp-TiB2p对晶界的钉扎作用;(c)晶内分布的微纳米尺度TiCp-TiB2p对位错运动的阻碍作用。本论文所取得的成果为开发和制备具有高的室温和高温力学性能、室温疲劳性能和高温抗蠕变性能的微纳米尺度陶瓷颗粒增强铝基复合材料提供了新的技术思路、实验依据和理论参考。
其他文献
<正>"要进一步提高认识,做到立法、备案审查工作一起抓""要完善备案审查工作机制,健全常委会对备案审查工作的统筹协调机制""要加强备案审查工作的培训指导,开展备案审查专题
宋代的篆书向来不被看好,但这也是书法史上一段无法忽略的时期。宋代的篆书在继承中所产生的变异不仅为其发展增添了一丝新的生机与样式,也为后人的创作带来了启发。释梦英作为五代末、北宋初期书坛的风向标所带来的影响力不可小觑。梦英作为一名得道高僧,因其擅长写玉箸小篆在五代末宋代初期名冠一时,深受名流巨贵们的追捧。皇帝也因欣赏梦英的书法,帘前赐紫,可见梦英在当时的声誉地位是极其高的。但他的生平在史籍中并没有详
业绩承诺是指资产出让人在合并和收购过程以及借壳上市过程的未来期间对资产购买者的承诺。如果转让人的实际经营业绩未能达到承诺的业绩标准,则有必要向收购人补偿实际利润中低于预期利润的部分。有些学者认为业绩承诺在遏制并购公司的高估值和保护中小股东利益方面发挥了作用,还对公司的经营和发展有激励作用,但也有些学者提出异议,他们认为业绩承诺在某种程度上为大股东转送利润提供了机会,并且不合理的承诺业绩可能会使公司
党的十九大明确提出了”把党的政治建设摆在首位”,自此以后,党的政治建设迅速成为了新时代的关键词和关注点。党的政治建设是党的根本性建设,把控着党的建设的方向,决定着党
铁异化还原对河口潮滩湿地有机质代谢有着深远的影响。为了深入研究河口潮滩湿地铁异化还原的过程,本文以我国东南沿海闽江河口鳝鱼滩短叶茳芏(Cyperus malaccensis)潮滩湿地
人力资源管理是从西方国家发展到我国的。简单地说,它就是将劳动力、资本、土地这三个生产要素有机地结合起来并应用,从而创造出财富的一个整体。在企业运行与发展过程中,人
水分和磷肥是影响作物生长的重要因素。前人研究表明,不同灌溉方式对土壤磷浓度有较大影响,但不同灌溉方式影响土壤磷浓度进而调控水稻产量的研究较少。为了明确水磷耦合对水稻产量的影响,本实验以“中嘉早17”水稻品种为实验材料,通过结合不同灌溉方式(正常灌溉:CF,0 kpa;轻度干湿交替灌溉:FAWD,-15 kpa;以及重度干湿交替灌溉:AWSD,-30 kpa)及施磷处理(当地施磷水平:NP,90 k
沈从文是一位的多产的作家,他的作品大多是以故土湘西为题材的,这使得他的作品具有鲜明的地域色彩;他尽情地抒写湘西社会里的人性美和人情美;他以“乡下人”的眼光打量这世间
中医外治法以整体观为基础,通过外部干预达到内部调节,疗效确切,作用迅速、经济安全,基本无不良反应,包括针灸、推拿、外敷、熏蒸、塌渍等。实验研究证实中医外治法具有免疫
目的:探索18F-FDG PET/CT中表现为骨髓弥漫性代谢增高的患者的图像及临床特点与骨髓恶性浸润(malignant infiltration,MI)的关联,基于此基础,建立该类图像的骨髓恶性浸润的预测