H2S对RhoA的Ser188位点磷酸化的调节及其介导的大鼠脑缺氧/缺血性损伤的保护作用

来源 :安徽医科大学 | 被引量 : 0次 | 上传用户:wxcld
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
背景中风是目前最常见的死亡原因之一,也是在全世界范围内持续性和获得性残疾的主要原因,随着人口变化,发病率进一步增加,对人们生活的质量带来巨大负担。中风分为出血性中风和缺血性中风,后者更常见,当前治疗的重点是通过静脉溶栓和血管内血栓切除术进行快速再灌注,但再灌注的同时也会损害大脑组织,因此对中风可用的治疗方法极为有限,研究预防策略正朝着卒中管理的前沿发展,一些新的进展为神经保护带来了新的希望。Ras同源家族成员A(Rho A),是一种分布广泛的胞质蛋白,属于小GTP酶家族,鸟苷三磷酸水解酶(Rho GTPases)构成了相当普遍表达的胞质分子开关,控制了一系列下游效应子的活性,Rho依赖性卷曲螺旋激酶(ROCK)是Rho A最直接、最主要的效应分子,有ROCK1和ROCK2两种亚型。缺血性脑损伤可诱导Rho A激活和ROCK2表达的显著上调,越来越多的证据表明,Rho A/ROCK通路参与了中枢神经系统一些疾病的病理过程。Rho A的磷酸化是导致其功能发生改变和调节其活性的主要方式之一,Rho A在Ser188位点磷酸化能够抑制Rho A激活。硫化氢(Hydrogen sulfide,H2S)是一种普遍存在的第二信使分子,起神经调节剂的作用,在许多哺乳动物器官和系统中均具有重要功能,参与大脑的生理和病理机制。内源性H2S合成的酶主要包含胱硫醚-γ-裂解酶(L-cystathionine-γ-lyase,CSE),胱硫醚-β-合酶(L-cystathionine-?-synthetase,CBS)和3-巯基丙酮酸硫转移酶(3-mercaptopyruvate sulfurtransferase,3-MST)。我们前期研究证明了H2S可促进大鼠脑血管平滑肌细胞中KCa通道的开放,CSE产生的H2S对小鼠脑缺血再灌注(Ischemia/reperfusion,I/R)损伤具有保护作用,但其作用的分子机制尚不明确。前期研究者报道脑内皮/神经血管单位(Neurovascular unit,NVU)存在重要作用,脑血管的自动调节对于保护神经细胞免受缺血性损伤非常重要,缺血性脑组织的重塑涉及神经元和微血管细胞之间的相互作用,对神经血管单位缺血性死亡过程涉及的机制有待深入的了解。基于以上的研究背景,我们做了以下几个方面研究:1.构建并表达Glutathione S-transferase(GST)标签的Rho A野生型(GST-Rho Awild)和Rho A Ser188位点突变型(GST-Rho AS188A)蛋白,观察外源性H2S(Sodium hydrosulfide,Na HS)对其体外磷酸化的影响。2.探讨H2S抑制Rho A/ROCK通路的靶点和机制,并研究H2S促进Rho A Ser188磷酸化对海马神经元缺氧复氧(Hypoxia-Reoxygenation,H/R)损伤和大鼠脑缺血再灌注损伤的作用。目的1.观察H2S对Rho A的Ser188位点磷酸化的调节;2.探讨H2S对海马神经元Rho A Ser188位点的作用及其潜在的H/R损伤保护机制;3.探讨Rho A Ser188位点在H2S对大鼠缺血性脑损伤保护的影响。方法1.构建Rho Awild-p GEX-6p-1和Rho A S188A-p GEX-6p-1重组原核质粒,诱导表达并纯化GST-Rho Awild和GST-Rho AS188A蛋白,在进行体外磷酸化测定。2.构建Rho Awild-p EGFP-N1和Rho AS188A-p EGFP-N1重组真核质粒,再进行大鼠原代海马神经细胞(Hippocampal nerve cells,HNCs)培养与鉴定,并将重组质粒通过电转染到HNCs中,给与不同浓度的外源性H2S(Na HS)后western blot测定Rho A Ser188磷酸化蛋白及其膜质蛋白和ROCK2蛋白表达,酶联免疫实验(ELISA)法测定Rho A和ROCK2活性。3.全细胞膜片钳记录Na HS对转染重组质粒后的神经细胞大电导钙激活钾通道(BKCa)电流的影响。4.建立H/R损伤模型,通过细胞计数试剂盒(CCK-8)检测转染重组质粒后的神经细胞活力变化,乳酸脱氢酶(LDH),神经特异性烯醇化酶(NSE)释放变化评估其损伤。5.原代大鼠脑血管内皮细胞(ECs)培养与鉴定,CSE-/-小鼠和3-MST-/-大鼠的原代内皮细胞与神经细胞共培养,加入乙酰胆碱(ACh)刺激内皮细胞释放H2S,测定Rho A Ser188磷酸化蛋白及其膜质蛋白和ROCK2蛋白表达水平,测定Rho A和ROCK2活性,同时测定两种内皮细胞释放的H2S含量。6.分别将Rho Awild-p EGFP-N1和Rho AS188A-p EGFP-N1真核质粒转染到HNCs,与CSE-/-ECs进行共培养,加入乙酰胆碱(ACh)刺激内皮细胞释放H2S,并进行H/R损伤造模。测定Rho A Ser188磷酸化蛋白及其膜质蛋白和ROCK2蛋白表达,测定Rho A和ROCK2活性,以及细胞活力、培养上清LDH和NSE的变化。7.Hoechst 33258染色,在荧光显微镜下观察神经细胞核损伤情况,Annexin V/PI染色通过流式细胞仪检测凋亡细胞。8.Ca2+成像系统荧光显微镜(Olympus IX73)检测神经细胞内Ca2+含量并获得细胞内Ca2+信号的荧光图像。9.脑立体定位转染Rho Awild-p EGFP-N1和Rho AS188A-p EGFP-N1真核质粒到大鼠海马区域,通过western blot检测Rho Awild和Rho AS188A蛋白表达,冰冻切片在荧光显微镜下观察转染效果。10.双侧颈总动脉结扎2VO对转染成功的大鼠建立脑I/R模型,激光散斑成像技术(Laser speckle imaging,LSI)检测血流变化,观察造模成功与否。缺血2h再灌注24h后,采用苏木素-伊红(HE)染色观察海马区域损伤程度,TUNEL检测海马神经细胞凋亡情况,western blot检测海马组织Rho A Ser188磷酸化蛋白和ROCK2蛋白表达,测定Rho A和ROCK2活性,以及血清LDH,NSE的变化。结果1.放射自显影结果显示,在PKG1存在下,H2S供体Na HS(100μmol/L)显著促进了GST-Rho Awild蛋白的磷酸化,但是GST-Rho AS188A蛋白并没有发生磷酸化。这表明Na HS可以通过Ser188位点促进Rho A的磷酸化。2.H2S(Na HS和内皮源性CSE产生)可促进空质粒或GFP-Rho Awild或GFP-Rho AS188A质粒转染的神经元中Rho A的磷酸化,以及GFP-Rho Awild质粒转染的神经元中GFP-Rho Awild的磷酸化。与对照组相比,p-Rho A/Rho A比值或p-GFP-Rho Awild/GFP-Rho Awild比值明显增加。但对GFP-Rho AS188A的磷酸化没有影响,GFP-Rho AS188A质粒转染的神经元中的p-GFP-Rho AS188A/GFP-Rho AS188A比值与对照组相比没有明显变化。这些结果表明,H2S可以诱导大鼠海马神经元中的Rho A磷酸化,并且这种磷酸化由Rho A Ser188介导。3.H2S能够使Rho A和GFP-Rho Awild在细胞膜中的含量显著减少,在胞质中的表达增高,但对GFP-Rho AS188A在细胞膜和细胞质中的分布没有明显影响。这些结果表明,Ser188是H2S引起神经元中Rho A从细胞膜向细胞质内易位的必需条件,同时可以通过Ser188抑制Rho A活性。4.Na HS对转染GFP-Rho AS188A质粒的神经细胞BKCa通道电流的增加低于转染空质粒和GFP-Rho Awild质粒组且具有显著性差异(30 m V-70 m V)这些结果表明,Na HS对BKCa通道电流的增加受到Rho A Ser188的调控。5.在空质粒或GFP-Rho Awild质粒转染的大鼠海马神经元中,H2S可显著抑制ROCK2蛋白的表达及其活性,但在GFP-Rho AS188A质粒转染的神经元中,抑制作用减弱,表明Rho A Ser188与H2S抑制神经元中ROCK2蛋白表达及其活性有关。6.在空质粒或GFP-Rho Awild质粒转染的神经元中,H2S显著抑制细胞活力的降低以及LDH和NSE活性的增加。然而,在GFP-Rho AS188A质粒转染的神经元中,H2S的这些作用显著降低。这些结果表明,Rho A Ser188介导了H2S对神经细胞H/R损伤的保护作用。7.在空质粒或GFP-Rho Awild质粒或GFP-Rho AS188A质粒转染的CSE-/-EC共培养神经元中,H/R损伤诱导神经细胞凋亡和细胞内游离Ca2+荧光强度显着增加。在空质粒或GFP-Rho Awild质粒共培养的神经元中,CSE+/+EC可以明显降低H/R损伤诱导神经细胞凋亡的增加和细胞内游离Ca2+荧光强度,但对转染GFP-Rho AS188A质粒共培养的神经元没有影响。这些结果表明,内皮CSE产生的H2S可以通过抑制细胞内游离Ca2+的增加来保护神经元免受H/R损伤,并且该作用是由Rho A Ser188介导的。8.动物体内实验中,在空质粒或GFP-Rho Awild质粒转染的大鼠海马中,Na HS能够促进Rho A的磷酸化,抑制Rho A活性,同时降低ROCK2的表达和活性,减轻大鼠脑I/R损伤诱导的血清LDH和NSE的增高,以及海马组织中神经细胞损伤和凋亡。但对转染GFP-Rho AS188A质粒的海马组织中这些作用显著降低。这些结果表明,Na HS减轻大鼠脑I/R损伤且与Rho A Ser188有关。结论1.Na HS可以通过Ser188位点促进Rho A的磷酸化。2.Na HS可能通过Rho A Ser188增加大鼠海马神经细胞中BKCa通道电流。3.内外源性H2S通过促进大鼠海马神经细胞Rho A Ser188磷酸化来保护海马神经元免受H/R损伤。4.Rho A Ser188介导了H2S对大鼠脑I/R损伤的保护作用。
其他文献
学位
随着基础教育现代化,STEAM作为一种融合了(Science科学,Technology技术,Engineer工程,Arts艺术和Mathematics数学)多门学科的教育模式已成为教育改革的重要途径,近些年来备受国内学者关注,并致力于本土化的应用研究。目前研究者及研究团队主要集中在教育水平较高的一二线城市的研究所、教育机构与高校,而教育发展较为薄弱的乡镇、农村等学校,因地理条件、教育资源、教师素质
学位
背景充分的肠道准备对于高质量的结肠镜检查至关重要。目前临床上主要在肠镜检查前由患者对肠道准备状况进行评估,存在判断不及时或不准确的问题,从而影响肠道准备的效果。因此需要一种客观评价的程序,辅助评估肠道准备是否充分。本试验研发一种新型人工智能程序,通过对患者肠道准备后排便照片进行评估,以判断肠道准备的状态,待肠道清洁充分后再接受肠镜检查,从而提高肠道准备质量,增加结肠镜检查的效能、腺瘤的检出率和CR
目的:从分子网络切入,解析非创伤性股骨头坏死(NONFH)不同中医证候的生物学基础及其对证方药的作用机制。方法:30例NONFH患者(包括痰瘀阻络证、经脉痹阻证、肝肾亏虚证各10例)为疾病组,10例接受激素治疗未发生NONFH的患者为对照组。通过全基因组表达谱芯片检测与生物分子网络分析相整合的方法,筛选NONFH不同证候相关差异基因。在中医药整合药理学研究平台(TCMIP)v2. 0(http:/
第一部分LncRNA TUG1/miR-145-5p在慢性阻塞性肺疾病急性加重中的临床研究引言慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease,COPD)是一种常见的由有毒颗粒或气体导致的气道和(或)肺泡异常引起的以持续呼吸道症状和气流受限为特征的可以预防和治疗的疾病。COPD急性加重(acute exacerbation of COPD,AECOPD)
目的:甲型流感病毒(IAV)可引起全球爆发和流行,导致较高的发病率和死亡率,是危害人类健康的重大公共卫生事件。气道上皮细胞是肺组织的第一道生理屏障,其对吸入性过敏原、有害颗粒和感染性病原体(如流感病毒)的防御发挥着至关重要的作用。紧密连接蛋白(如ZO-1)和粘附连接蛋白(如E-cad)作为气道上皮细胞屏障的重要组成部分,维持着气道屏障结构和功能的完整性。研究表明,在流感病毒感染过程中,肺组织中会产
背景与目的:越来越多的证据表明PI3K/Akt通路基因多态性与前列腺癌(PCa)的发生密切相关。然而,这些结果是有争议的。在此,我们对PI3K/Akt信号通路基因多态性与PCa风险之间的关系进行了meta分析。材料与方法:本研究在PubMed,Web of science和google学术数据库进行文献检索。PI3K/Akt通路的基因集引用自京都基因与基因组百科全书(KEGG)网站。检索截止日期为
研究背景:慢性髓细胞白血病(chronic myeloid leukemia,CML)是临床常见的血液系统恶性肿瘤,主要特征为骨髓造血生成大量未成熟的白细胞,其发病率高达新发成人白血病的20%。BCR-ABL融合基因目前被认为是CML发病的重要原因和基本特征,该融合基因表达可生成具备组成性酪氨酸激酶活性的BCR-ABL嵌合蛋白。在CML的临床治疗中,特异性BCR-ABL抑制剂,如酪氨酸激酶抑制剂(
研究目的:通过构建可注射的海藻酸钠(ALG)水凝胶,共同包载亲水性化疗药物盐酸阿霉素(DOX·HCl)和在近红外二区(NIR-II)区有明显吸收的金纳米金棒(Au/Ag NRs),从而实现一次注射,多次治疗的目的,并达到“1+1>2”的光热-化疗协同治疗NSCLC的目标。研究方法:1.金纳米棒Au/Ag NRs的制备和表征:本研究首先通过晶种法合成金纳米棒Au NRs,将还原剂DDTC共价地覆盖在