基于硬脂酸改性TiO2-硅烷涂层的疏水和腐蚀行为研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:tb881011
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超疏水涂层对水的不润湿性使其在自清洁、抑冰、防腐等领域有着巨大的应用前景。尽管超疏水涂层的研究发展很迅速,但是其距离大规模的工业化应用还有很大的差距,一方面是其与基体之间的结合强度限制,另一方面是其防腐性能的长效性。因此,合成一种具有优良粘结性能和防腐性能的超疏水涂层显得尤为重要。本文开发出了一种具备超疏水能力的涂层制备工艺,研究了所制备涂层对304不锈钢和Q235钢的腐蚀行为,分析了不同环氧树脂添加量对所制备涂层疏水性能、腐蚀性能和粘结性能的影响。结果如下:⑴通过调节硬脂酸和十七氟癸基三甲氧基硅烷的含量确定了最佳的涂层制备工艺;SEM、3D和XPS的结果证明了疏水化的Ti O2和十七氟癸基三甲氧基硅烷能很好地修饰在涂层的表面上,修饰物提供了层级分明的微-纳米结构,提高了所制备涂层的疏水性能。⑵通过分析元素的含量发现所制备涂层的自修复能力(3.5 wt.%氯化钠溶液中)来源于酯键反应的可逆性,并通过自修复循环测试进一步验证了所制备涂层的自修复性能;随着浸泡时间的延长,电化学阻抗谱的特征与“空气膜”的变化表明腐蚀反应的控制因素在发生变化,浸泡初期主要是所制备涂层对水溶液的隔绝作用,浸泡中期主要由腐蚀产物的扩散过程所控制,浸泡后期是由水解产物和腐蚀产物堆积在一起所形成的保护膜在起主要作用;通过将极化测试后的试样进行干燥处理,发现所制备涂层仍然具备超疏水能力,这与前人的结果相比是显著提高的;耐磨性测试表明所制备涂层在200 g的砝码下磨损循环200次后仍具有较好的超疏水能力。⑶环氧树脂对所制备涂层的微纳米结构和表面化学组成造成了一定的影响,但是随着环氧树脂添加量的增加,涂层电阻和电荷转移电阻呈指数型增加,而涂层电容和双电层电容呈指数型减小,这表明所制备环氧涂层具有优良的耐腐蚀性能;本文所建立的离子通道模型表明环氧树脂所形成的三维网状结构能封闭所制备涂层的离子通道,从而提高所制备涂层的耐腐蚀性能;通过改进之后的疏水模型对所制备涂层在低环氧树脂添加量下的自修复行为进行了分析,结果表明腐蚀产物和水解产物会恶化所制备涂层的自修复性能;拉拔式附着力测试表明所制备涂层的结合力随着环氧树脂添加量的增加而逐渐增大,这表明环氧树脂能有效提高所制备涂层的粘结性能。
其他文献
大气污染是非常严重的全球性环境危机,颗粒污染物(PM)是大气污染的重要来源。近年来各国对气体排放的标准也越来越严格。因此过滤效率高、过滤阻力低、高强度、耐高温的多孔陶瓷成为最具有发展潜力的高温气体过滤材料。定向冷冻浇注制备的氧化铝多孔陶瓷具有孔径较大的层状直通孔和亚微米级互通紊乱孔组成的非对称结构:亚微米及纳米网状孔对超细颗粒(PM0.3)具有较高的过滤效率,层状直通孔结构非常有利于减小过滤阻力,
学位
利用电还原技术直接将CO2还原为CO等增值化学品,可以显著缓解能源危机和环境污染。但目前二氧化碳电还原(CO2RR)面临着过电势高、产物选择性低以及竞争反应激烈等困境,研究表明,过渡金属氧化物/氮掺杂石墨烯复合材料是一种很有发展潜力的CO2RR电催化剂,但究竟哪种氮掺杂构型(吡啶氮、吡咯氮或石墨氮)对催化剂活性有明显的提升作用仍不明确。本论文采用低强度脉冲激光辐照(LI-PLI)法和直接热解法,合
学位
随着经济社会的快速发展,对石油、天然气等能源的需求日益增加。面对我国进口石油及自主开发的天然气田硫含量高的现状,设备硫腐蚀问题成为石油炼化工业和天然气开采运输领域亟待解决的重大问题之一。Monel K500合金作为一种典型的镍基耐蚀合金,被广泛的应用在油气工业中。但在长期服役过程中,在富含HS-、S2-等阴离子的液相环境中Monel K500合金发生了局部腐蚀穿孔的现象。然而目前缺少Monel K
学位
电解水制氢是最具潜力的产氢技术之一。目前商用电解水催化剂主要为昂贵稀少的贵金属及其合金,这大大增加了制氢成本。因此,开发具有高催化活性与稳定性的非贵金属催化剂是氢能产业发展的关键。二硫化钼(MoS2)因具有独特的层状结构以及较高的本征催化活性,被认为是可替代贵金属催化剂的材料之一。但是,2H-MoS2表现为半导体特性,其催化性能受到其导电能力及活性位点数目的制约。因此,本文拟通过不同方法对2H相M
学位
面对日益严重的能源危机,利用水分解制取绿色氢能被认为是最有潜力的解决策略之一。光电催化水分解能够将分布广泛的太阳能转换为氢能储存起来,随后参与到合成氨、化工应用中去,实现清洁能源的循环利用,是目前研究广泛的前沿方法。然而,析氧反应涉及复杂的四电子过程,反应动力学慢,是光电催化水分解的决速步骤。因此,开发高效的光阳极材料对于提升光电催化水分解的整体性能具有至关重要的作用。在众多金属氧化物光阳极材料中
学位
硫化锌因具有理论比容量(572 mAh g-1)高,反应可逆性好及易于制备等优点,在钠离子电池领域受到广泛关注。然而,由于充放电过程中体积变化大,导电性差,限制了其储钠性能。目前将结构设计与材料复合相结合被认为是解决这些问题的一种潜在策略。本文通过一步水热法在中空硫化锌纳米棒表面合成二硫化钼/氮掺杂碳(MoS2-NC)纳米片,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等多项表征分析其生长机
学位
超级电容器由于充放电速率快、工作温度范围宽、使用寿命长等优点,已被成功应用于航空航天、电子产品、混合动力汽车、智能电网等领域。作为超级电容器最重要的组成部分,电极材料在提高器件性能上起着关键作用。常见的电极材料主要有碳材料、导电聚合物、过渡金属化合物及复合材料,其中镍钴基金属化合物具有高的理论比容量和高的电化学活性,然而作为超级电容器电极使用时,仍存在比表面积小、导电性差等问题,其实际容量较低。因
学位
石墨烯(Gr)作为新型二维层状碳材料是金属基复合材料的理想增强相,但其在铜基复合材料中的增强效率远低于理论值,原因是石墨烯与铜基体的界面润湿性差。界面改性是提高石墨烯强化效果的有效途径。本论文采用第一性原理计算研究了Ce、Sc、La、Y及Y2O3改性Gr(001)/Cu(111)界面的原子和电子结构及界面结合性质,并研究了Y及其氧化物(Y2O3)掺杂石墨烯/铜(Gr/Cu)体系的力学性能及断裂机制
学位
光催化杀菌由于具有短时高效、杀菌彻底、毒副作用小等优势,具有极其广阔的应用前景,是目前抗菌领域的研究热点之一。近几年,已经有多种半导体光催化材料被用于抗菌领域。在众多的光催化材料中,二氧化钛(TiO2)由于具有原料来源广泛、制备工艺成熟、光催化效果好、无毒无污染等优点,是目前应用最广泛的光催化剂。但是,单纯的TiO2禁带宽度较大,只能在紫外光的激发下发挥光催化性能。一方面,长时间的紫外光照会对人体
学位
锌-空气电池因理论能量密度高(1084 Wh kg-1),安全可靠,成本低等优点成为最有前景的锂离子电池替代品之一,但较低的功率密度极大地限制了其商业化应用。锌-空电池的功率密度主要受限于电池放电时空气电极阴极氧还原反应(ORR),因此,开发高效的ORR电催化剂十分重要。我们通过模板刻蚀和高温热解法合成了具有分级多孔结构的S掺杂铁-氮-碳(Fe-N-C)催化剂,作为高功率密度锌-空气电池的ORR催
学位