论文部分内容阅读
随着经济的迅速发展和人民生活水平的提高,能源和环境问题日益突出,不断利用新的节能技术来提高能源的利用效率是节约能源并实现可持续发展的必由之路。储能技术能够解决能量供求在时间和空间上不匹配的矛盾,因而是提高能源利用效率的有效手段。热泵技术以其节能和环保的优势在很多领域得到了广泛的应用,其在制取生活热水上的应用也越来越受到重视。把相变储能技术和热泵技术结合起来,研制相变储能式热泵热水器,实现优势互补,将有更大的节能空间和应用前景。本课题以相变储能式热泵热水器储能换热器为研究对象,采用理论分析、实验测试和数值模拟相结合的研究方法对其传热特性进行了深入系统的研究。主要研究工作包括以下几个方面:1、根据相变储能式热泵热水器的工作原理及相变储能材料(phase change material, PCM)的遴选原则,选取了合适的PCM。在对热泵热水器进行总体热量衡算的基础上设计了一种管翅式储能换热器,给出了储能换热器的具体结构参数。对储能换热器的传热特性进行了理论分析,采用了复合材料的理论模型对PCM侧的导热系数进行了分析,经分析指出PCM侧导热性能的改善是提高储能换热器传热性能的主要途径。2、对强化PCM相变传热特性进行了研究,通过在石蜡PCM中添加纳米铜制备纳米复合相变储能材料(nanocomposite phase change material, NC-PCM)来实现强化传热的目的。采用差示扫描量热法(DSC)测量了NC-PCM的相变潜热、相变温度。研究表明在纯石蜡中添加纳米铜颗粒,NC-PCM的相变潜热比纯石蜡略低,且随粒子浓度的增大逐渐减小,但相变温度变化不大;采用瞬态热线法测试了NC-PCM的固态和液态导热系数,结果表明导热系数随着随纳米颗粒含量的增大而增大,呈非线性关系。NC-PCM循环加热、冷却100次后,其热物性参数均改变不大,说明NC-PCM具有较好的热稳定性。对NC-PCM的相变传热进行了实验研究,采用温度-时间曲线法研究了不同纳米铜质量分数的NC-PCM的储、放热性能,采用红外摄像仪对其熔化和凝固过程的温度场分布进行了实时观察,结果表明在石蜡中加入纳米Cu粒子后,PCM的储、放热速率得到很大的提高。3、搭建了热泵热水器储能换热器性能测试实验台,模拟储能式热泵热水器的工作工况对储能换热器内部的温度场分布和出口水温进行了实验测试。在整个储能阶段和放热阶段,储能换热器处于非稳态条件下工作,其内部的换热过程是一个复杂的非稳态换热过程。对储能装置的出口水温进行了测量,结果发现储能装置进口水流量越大,PCM凝固速度越快,放热持续时间越短,由于相变材料绝大部分热量以潜热的形式释放,这使得出水温度大部分时间维持在一个恒定的温度范围,这是利用相变储热的优势所在。对制取的热水所含热量进行了计算,结果表明储能装置中的热量大部分已经释放出来,残余热量较小,用相变储能的热量利用效率要高于水的显热储能。4、根据设计的储能换热器建立了相应的物理模型和数学模型,利用Fluent6.2软件对储能换热器放热情况进行了二维、非稳态模拟,分析了各种结构参数对放热过程的影响。结果表明,采用翅片结构大大强化了相变过程的热量传递,各种结构参数储能换热器放热速率均有重要影响。这为储能换热器进一步优化设计提供了参考。