可切换润湿性膜层的制备及其油水分离性能研究

来源 :宁夏大学 | 被引量 : 0次 | 上传用户:jxysb250
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
与传统油水分离技术相比,水下(超)疏油/油下(超)疏水膜材料具有表面润湿性可逆转变的特性,用于油水分离具有分离效率高、分离速度快、能耗低、操作简单、不产生二次污染、可以实现不同类型油水混合物的高效分离等优点。为此,本文以不锈钢网为支撑,通过调控实验参数优化膜的结构和性能,制备了两种水下(超)疏油和油下(超)疏水性网膜,主要研究内容如下:1.以300目不锈钢网作为基底,采用二次生长法在不锈钢网表面构建了由锯齿状晶粒交错生长的金属有机骨架膜层,制备得到连续致密的CAU-10-H/不锈钢网复合膜。实验结果表明,以不同液体进行预润湿,CAU-10-H/不锈钢网复合膜表面润湿性可在水下(超)疏油和油下(超)疏水之间可逆切换,实现不同类型油水混合物的高效分离。通过不同水热反应时间生长的网膜均具有良好的浸润性,水和油的接触角均小于10.0°,当不锈钢网孔径由29.3±2.5 μm减小至9.9±1.3 μm,其水下油的接触角由150.0°增加到152.2°,表现出水下超疏油性;在不同油下水的接触角范围在140.4°~152.2,表现出油下(超)疏水性。CAU-10-H/不锈钢网复合膜对不同种类的油水混合物均具有高分离效率(>99.9%)和高通量(0.8×1 05~1.9×105L·m-2·h-1)。对不同类型的乳化液同样具有较好的分离效果,水包油乳化液通量大于494.1 L·m-2·h-1,油包水乳化液的通量大于649.3 L.m-2·h-1,分离效率均大于99.9%。CAU-10-H/不锈钢网复合膜还展现出优异耐腐蚀性。2.以500目不锈钢网作为基底,通过水热法制备得到CoA1-LDH/不锈钢网复合膜。研究了水热反应时间和生长次数对膜结构及其性能的影响,并将其应用于油水分离。以不同液体进行预润湿,CoAl-LDH/不锈钢网复合膜表面润湿性可在水下(超)疏油和油下(超)疏水之间可逆切换,可实现不同类型油水混合物的高效分离。CoAl-LDH/不锈钢网复合膜具有良好的浸润性,空气中水和油的接触角均为0°,其水下油的接触角范围在145.8°~153.2°,表现出水下(超)疏油性。不同油下水的接触角范围在143.4°~153.8°,表现出油下(超)疏水性。分离分层油水时,水通量高达21100.6 L·m-2·h-1,油通量大于8385.2 L·m2·h-1,分离效率大于99.9%。该膜对各种水包油和油包水型乳液显示出优异的分离性能(>99.9%)和良好的通量(>278.4L·m-2·h-1)。在可见光下,利用CoAl-LDH膜层光催化活性可有效光降解有机污染物,CoAl-LDH/不锈钢网复合膜对水中亚甲基蓝的降解率达到100%;同时可对含亚甲基蓝的水包油乳化液进行光降解,降解后水溶液内无油滴,透光率接近100%。光诱导自清洁能力使CoAl-LDH/不锈钢网复合膜至少可重复分离50次,具有良好的抗污染性能和循环稳定性。
其他文献
研究利用环保简单的水热法制备了金属Cr、Mn、Fe、Co、Ni、Cu、Bi、Pb掺杂的富钛钛酸锶SrTiO3@TiO2(STO@T)材料。掺杂改性后的材料在可见光条件下有较好的光催化CO2还原制C1产物的性能。制备了 MA-STO@T和MB-STO@T两类型的掺杂富钛钛酸锶材料,MA(Bi、Pb)表示对钛酸锶A(Sr)位进行了掺杂,MB(Cr、Mn、Fe、Co、Ni、Cu)表示对钛酸锶B(Ti)位
学位
煤炭作为主要的一次化石能源,在未来始终处于我国能源消费的主体地位。化学链气化(Chemical Looping Gasification,CLG)被视为煤炭清洁高效转化的重要技术手段。煤气化转化过程中,掌握煤灰有效分离尺度是实现煤CLG技术走向工业应用的基础。本文以宁夏羊场湾烟煤灰为研究对象,考察了 CLG过程中煤灰对钛铁矿载氧体流动特性及反应行为的影响。(1)在间歇流化床反应器中,考察煤灰对钛铁
学位
半导体光催化技术是一种可再生、经济、安全和清洁的技术。石墨相氮化碳(g-C3N4)光催化剂因其无毒无害、易于制备以及性能优异等特点受到了广大研究者们的密切关注,并且已在光催化分解水制氢、光催化二氧化碳还原和光催化降解等领域取得了可观的研究成果。但体相石墨相氮化碳的比表面积小、量子效率较低、光生电子-空穴对的复合过快以及生物相容性较差等缺陷,以上这些缺陷使其在应用和发展方面受到了极大的限制。因此,调
学位
糖尿病作为一种全球范围内的严重慢性疾病已对人类健康造成威胁,因此实现血糖浓度的精确快速检测对于糖尿病的诊断和治疗具有重大意义。酶葡萄糖传感器的发展因其成本高、稳定性差、对环境要求苛刻等缺点大受制约,这就促使科研人员们去构筑一种成本低廉、稳定性高、选择性好的非酶葡萄糖传感器。其关键在于电极材料的选择。越来越多的科研人员将目光放到了成本低廉、资源丰富且催化活性优异的过渡金属氧化物上去。但过渡金属氧化物
学位
近几年来,能源紧缺、环境污染等问题日趋严峻,利用太阳光通过半导体光催化技术来产生各种清洁燃料和去除污染物是一种解决能源环境问题的重要途径。但是,传统的光催化剂能量带隙较宽,只能吸收占太阳能约4-5%的紫外光能量。因而,开发具有较宽太阳能光谱响应范围的高效光催化剂至关重要,已成为前沿研究的热点。钒酸铋(BiVO4)具有带隙较窄、光响应能力强与化学稳定性较好等特点,在光催化应用中具有广阔的前景。然而,
学位
开发煤炭清洁、高效利用新方式是减少碳排放的关键一环。煤炭作为我国能源的安全基石,避免因煤炭燃烧而带来的环境问题至关重要。化学链燃烧技术(Chemical Looping Combustion,CLC)作为世界公认的第三种碳捕集技术,具有显著的优越性。由于煤自身组成的复杂性,含有硫、氮等大量污染元素,导致燃料反应器出口烟气组成复杂,影响CO2的捕集与直接利用。烟气中含硫污染物可与载氧体作用生成金属硫
学位
有机硅材料因具有一系列优良性能,广泛应用于工业、农业和科技等领域。本文针对聚氨酯脱模领域和发泡领域的相关应用,设计合成了两种改性聚硅氧烷(改性硅油):长链烷基改性硅油和Si-O-C型嵌段聚醚改性硅油。采用高含氢硅油调聚法,通过大孔型磺酸树脂催化八甲基环四硅氧烷(D4)开环与高含氢硅油发生调聚反应,采用六甲基二硅氧烷(MM)进行封端,得到分子量分布均匀的侧链低含氢硅油(含氢量约为0.18%)。采用单
学位
丙烯是石化行业中仅次于乙烯的基础原料。国内丙烯需求缺口持续增大,丙烷直接脱氢制丙烯已成为热点技术,但丙烷直接脱氢需要在高温下反应,催化剂易烧结失活,而丙烷氧化脱氢一般以氧气作为氧化剂,氧气的引入会导致丙烯深度氧化,丙烯的选择性低。化学链脱氢-烧氢耦合工艺是以晶格氧代替分子氧,再将脱氢反应产生的氢气选择性的燃烧,既可以防止丙烯的过度氧化,又可以促进脱氢反应朝着丙烯的方向移动。本论文将对化学链脱氢工艺
学位
目前,全球气候变暖问题日趋严重,面对我国富煤缺油少气的能源结构特征,提高煤炭利用效率是实现碳减排目标的关键。化学链气化技术作为煤炭清洁利用的重要技术手段,利用太阳能提供化学链气化过程所需热量,不仅实现煤炭资源的清洁高效利用,而且实现碳减排目标。本文提出太阳能-煤化学链气化互补制富氢合成气的新系统,实现煤炭高效转化利用。并对太阳能驱动煤化学链气化过程进行模拟研究,用以制备富氢合成气,并开发了其下游甲
学位
氢是一种清洁的燃料,且具有高能量密度,是氢燃料电池的原料,而氢燃料电池是目前迅速发展的燃料电池汽车的主要动力,因此氢能产业已成为各国竞相发展的新型产业。与其他的制氢技术相比,电解水制氢过程可直接采用光伏和风电等可再生能源,因此将具有广阔的应用前景。由于贵金属铂基催化剂具有优异的电化学析氢性能,是电解水制氢过程常用的电极催化材料,但由于铂属于稀缺资源,价格昂贵限制了其应用,因此开发一种高效低成本的电
学位