论文部分内容阅读
随着电子商务的迅速发展,商家和客户在享受网络带来便捷的同时,信息/产品过载现象日益严峻,客户淹没在海量信息中却无法快速找到自己需要的商品,商家也面临失去顾客导致销售困难等难题。在这种情况下,电子商务推荐系统应运而生。 电子商务推荐系统即利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买的过程。常采用的推荐技术有:基于内容过滤、基于协同过滤、基于知识发现、基于效用等。其中基于内容和基于协同过滤技术应用最为广泛,但是基于内容的推荐系统依赖于项目特征的提取,而且只能发现和用户已有兴趣相似的信息,不能为用户发现新的感兴趣的资源。基于协同过滤推荐系统也存在冷启动、评价稀疏等问题。 本文分析了案例推理和web日志挖掘与电子商务推荐系统相结合的可行性,综合CBR和web日志挖掘的特点,提出一个可行的方案,对于容易形式化的部分,由 web日志挖掘处理;对于形象化的描述以及难以结构化描述的问题,用案例推理来完成,充分运用多层次的知识,提高了电子商务推荐系统性能。同时,本文给出了基于B/S和多层结构设计思想的电子商务推荐系统设计方案,给出了实现的关键技术。