多特征联合学习的车辆重识别研究

来源 :南京信息工程大学 | 被引量 : 1次 | 上传用户:wj0987654321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于深度学习的车辆重识别旨在利用车辆外观特征在大型图库中检索目标车辆,实现车辆追踪,是智慧交通系统的一项核心技术。随着人工智能和大数据技术的发展,该技术在嫌疑追踪、无人停车场管理、智慧物流和自动驾驶等领域具有广泛应用,尤其是在当车牌被遮挡、移除、破坏等情况下,该技术发挥了巨大作用。由于车辆图像是由不同的摄像机拍摄得到,拍摄时光照、视角、分辨率等条件各不相同,导致车辆重识别面临着类间差异小、类内差异大的挑战。因此,如何提取车辆图像的鲁棒特征是车辆重识别的根本任务。目前最常用的方法是提取车辆的全局与局部特征,提取全局特征方法简单、计算量小,但全局特征的不稳定性导致识别率低下。局部特征对不同的环境更具鲁棒性,但利用局部特征存在额外消耗大的问题。因此本文分别针对全局和局部特征的方法提出两种解决上述缺陷的模型,故本论文开展的研究包括:(1)针对目前利用全局特征识别效率低下问题,提出了基于改进的Dense Net与联合损失的全局特征提取模型。在Dense Net121中引入SE(Squeeze-and-Excitation)模块,在训练的过程中学习每个通道的重要性,通过给各通道加权来减少Dense Net121特征重用过程中冗余信息的传递,同时充分利用卷积神经网络中层和深层特征的互补表达优势,将中间层与最后层特征融合,提取更有效的全局特征。此外,在车辆重识别中提出采用困难三元组与焦点损失的联合损失,提高难分样本损失值的比重,使网络对难以区分的车辆样本更加关注,提升对难分样本的鉴别能力。(2)针对目前利用局部特征需要庞大标注且模型复杂的问题,提出了增强局部区域感知的多特征学习模型。该模型包含全局与局部特征增强两个分支,全局分支同时获得中高级语义特征且融合了多尺度的池化,增强了对车辆全局的表征。局部特征增强分支提出了增强局部区域感知模型,首先将特征图划分为多个不重叠的局部块,加强对各局部的学习,然后对同一批次训练图像相同局部块的相同区域进行批量随机丢弃,加强对各局部块剩余区域的学习,进一步加强了对局部区域的注意力学习。联合全局与局部分支,模型同时学习到车辆的整体结构与细粒度的多特征信息,增强了模型的判别能力。
其他文献
目标跟踪是计算机视觉领域的基本任务之一。虽然经过几十年的研究,在跟踪精度和鲁棒性方面已经取得了很大的进展,但由于许多不确定因素,如外观变化、遮挡、背景杂乱等,目标跟踪仍然是一个具有挑战性的问题。为了实现更高精度的跟踪,本文在传统相关滤波跟踪框架的基础上,通过结合现有的跟踪算法,做了以下一些工作:为了解决目标跟踪算法在面对遮挡、旋转等复杂场景下跟踪失败的问题,提出一种基于检测器与定位器融合的自适应校
学位
基于高分辨率遥感影像进行震害建筑物检测,对开展应急响应救援及灾后重建等具有重要意义。目前,震害建筑物检测方法主要可分为基于经典机器学习和基于深度学习方法。前者采用用户定义的底层和中层语义特征,适用于小样本条件下的应用场合;后者则能够自动提取具有鉴别力和代表性的抽象特征,在训练样本充足条件下通常能够取得更加准确的检测结果。因此,两类方法在实际应用中各具优势,但同时又各自面临着不同的挑战。为此,本文分
学位
我国在新一代信息技术发展方面的人才需求量大,人才素质要求高,实验教学对于培养实践创新型人才起到关键性作用。传统的实验箱实验固定、通用性低、场地制约,缺乏理论性和开发性,并且具有缺乏工程实践应用等缺点。受新冠疫情影响,很多线下实验也无法顺利开展。设计一个功能丰富、通用便携的实验系统具有一定的现实意义。针对上述问题,本文主要工作如下:首先,设计了一种基于FPGA的口袋实验室系统,该系统采用“固定配置+
学位
二维材料是指厚度只有纳米级别的层状结构材料,由于电子只能在二维平面内自由运动,通常具有奇特的载流子迁移和热力学扩散特性,其出现极大的推动了材料领域的发展与进步,为电子、生物、航空航天等众多领域带来了更加优质的选择。Mo S2作为二维过渡金属硫化物(TMD)的代表,单层时具备直接带隙的能带结构特点,弥补了石墨烯没有带隙的缺点,在光电器件的应用领域拥有巨大潜力。在此基础上,本文通过化学溶液沉积法工艺在
学位
射频接收机是微波应用系统中的关键功能电路。常规的变频式接收机都需要一个独立的本振源来提供本振信号,以完成与射频输入信号的下变频。而自振荡混频接收机则通过有源器件在特定工作条件下的振荡产生本振信号,同时利用有源器件的非线性特性完成混频,避免了独立本振源的使用,因而在成本、功耗、结构方面具有显著的优势。另外,如果将自振荡混频过程中的振荡信号加以复用,不仅利用其做内部本振信号以实现混频,还将其引出以作为
学位
随着人工智能技术的不断进步,智能化机器人已是时代发展的需求。机器人对于复杂的动态环境,需要像人类一样拥有感知、决策、行动的能力。本文根据操作问答任务的设计需求,借助相应的多模态任务数据集,利用人工智能算法,构建一套集合视觉、听觉的机器人感知决策行为框架,从仿真环境和实际场景验证本文的协作机器人系统的先进性和实用性。本文的创新性工作包括以下内容:(1)针对机器人系统的各个设备之间的特性构建一种模块化
学位
大规模多输入多输出(Massive Multiple-Input Multiple-Output,Massive MIMO)技术已经成为实现5G的一项关键技术。Massive MIMO凭借其数据传输效率高、连接稳定和延迟低等各方面优势在实际生产中得到广泛应用。在Massive MIMO系统中,复杂程度和天线数量是密切相关的,随着天线数量增加,算法的复杂程度也随着变高,因此在接收端需要一种复杂程度低
学位
图像作为日常生活中重要的信息传播载体,其清晰度直接决定人们能否准确地从中获取有用的信息。由于成像系统和设备的不完善,以及光照等外界因素的影响,数字图像在形成、传输和存储过程中都会引入不同类型的噪声,造成图像信息丢失。随着卷积神经网络在图像处理领域的快速发展,基于卷积神经网络的合成噪声去噪算法无法满足真实噪声图像去噪的需求,实用性不足,且复杂的网络模型亦无法满足高效处理的需求。针对以上问题,本文主要
学位
集成电路产业已经成为世界强国的国家战略,芯片制造的关键技术和设备被少数欧美发达国家垄断。特别在射频、微波芯片封装中,键合金丝的拱高、跨度等参数对微波传输特性的影响很大,而这些参数的自动检测设备目前还依赖进口,为了打破技术封锁,弥补相关领域的研究空缺,本文针对实现键合金丝拱高和跨度的微米级测量技术展开了研究,具体内容如下:首先,设计并搭建了键合金丝拱高和跨度的图像采集、处理和实验平台。采用嵌入式方案
学位
气体检测是预防各类安全事故发生的重要手段。在日常生活、工业生产中往往会产生大量可燃易爆、有毒有害的气体,若发生泄漏不能及时发现并采取相应措施,将对长期生活、工作其中人员的身体健康带来极大安全隐患。同时,此类气体若积累到一定浓度,极易发生爆炸事故并将带来灾难性的后果。多年以来,此类安全事故层出不穷。因此如何快速、准确实现对泄漏气体的检测,具有广泛的应用价值。本文提出了一种采用传感器阵列与模式识别算法
学位