电力电子化并网设备激励下网络不对称故障分析的时变幅频对称分量法

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:heguojing514
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着电力电子技术的高速发展,电力电子化并网设备在电力系统源-网-荷中的比例越来越高,已经大规模应用于可再生能源发电、超/特高压直流输电、柔性交流输电以及交流变频传动等领域。电力电子化并网设备的输出特性明显区别于传统同步发电机等电磁变换设备的输出特性,必将给含大规模电力电子化并网设备的电力系统安全稳定运行与继电保护带来新的挑战。为了服务于设备的合理设计及选型、继电保护装置的整定及安装,需要进行网络故障分析,尤其是网络不对称故障分析,以获得故障过程中网络电压/电流的幅值/频率及其特征。然而传统网络故障分析是基于相量法,认为网络故障分析是恒定幅值/频率激励下无源元件的开环动态过程分析,不仅没能认识到故障过程中网络各节点电压/电流的幅值/频率时变特征,也没能认识到网络故障分析应该基于设备激励-响应与网络激励-响应所构成的闭环系统动态过程进行分析。尤其是电力系统中同步发电机等电磁变换设备已被风机、光伏发电机组等电力电子化设备大规模替代,暂态过程中设备内电势幅值/频率将在较大范围内波动,不能简单地认为网络故障分析是恒定幅值/频率内电势激励下的开环分析。此外,为了分析网络不对称故障,传统电力系统基于相量提出了对称分量法,将复杂的三相不对称系统分析转化为简单的三相对称系统分析,但是电力电子化并网设备激励下网络各节点电压/电流呈现出时变幅频特征,不能简单地用相量进行描述,因此传统对称分量法已经无法适用于电力电子化并网设备激励下的网络不对称故障分析。为此,本文基于设备和网络的基本结构和功能,首先阐述了故障过程中多样化设备内电势的时变幅频本质;然后指出了电力电子化并网设备激励下网络不对称故障分析是由故障边界条件约束的时变幅频内电势激励下的非齐次线性微分方程组的解,并结合非齐次线性微分方程组解的形式和时域仿真说明了时变幅频内电势激励下网络电压/电流的时变幅频本质;最后提出了电力电子化并网设备激励下网络不对称故障分析的时变幅頻对称分量法,并结合仿真进行了验证。本文所提出的时变幅频对称分量法可以简化时变幅频内电势激励下的网络不对称故障分析,为电力系统中电气设备设计与选型、继电保护装置配置与参数整定以及事故分析提供重要的理论依据。
其他文献
随着人工智能技术的发展和大数据的爆发,大规模神经网络成为了研究热点,这对计算机的算力和功耗提出了严苛的要求。然而随着传统硅基电子器件趋于其物理极限,已经难以通过尺寸微缩带来进一步的性能提升,因此急需发展新型电子器件。忆阻器具有尺寸小、速度快和功耗低的特点,并且凭借单器件存算一体和阵列中运算高度并行两大优势,是人工突触器件的理想实现者,在硬件神经网络搭建中极具应用前景。本论文以三元过渡金属氧化物Sr
目的:放射治疗在非小细胞肺癌患者的治疗中占据重要地位,然而放疗抵抗的产生极大程度地限制了放疗疗效,导致放疗失败以及肿瘤的复发转移。目前认为肿瘤干细胞是促进放疗抵抗的主要因素。SOX2是肿瘤干细胞特异性表达的一种转录因子,参与肿瘤的发生发展和细胞的干性维持,但其与非小细胞肺癌放疗抵抗之间的关系尚不清楚。本研究主要验证了非小细胞肺癌放疗抵抗细胞中SOX2的表达水平,探讨SOX2对非小细胞肺癌放疗敏感性
水电是一种清洁低碳、运行灵活的可再生能源,经济、社会、生态效益显著。经过多年发展,我国水电装机容量和年发电量已至世界领先地位,水电站建设正如火如荼。传统的设备检修方式已不能满足水电站水力发电设备检修与维护的需要,基于设备状态监测与故障诊断的状态检修技术能够很好地解决这一问题。数据采集是完成设备状态检修极其重要的一环,其基本功能是实时采集水电机组运行过程中产生的各种信号。水轮机调速系统是保证水电站机
电化学储能技术是应对大规模可再生能源并网最有效、最具潜力的技术之一。钠离子电池(Sodium-ion Battery,SIB)具有成本和资源上的优势,被认为是后锂离子电池时代的重要电池体系。受电极材料的制约,目前钠离子电池在能量密度、功率密度和循环寿命等方面还有待进一步提升。硬碳材料具有较大的层间距和无序的结构,在钠离子嵌入时体积变化较小、结构相对稳定,是目前最具实用价值的钠离子电池负极材料。然而
二维过渡金属硫族化合物(TMDC)凭借着其原子级的厚度和优异的半导体性质成为后摩尔时代最有希望延续摩尔定律的材料。硫化钼(MoS2)是其中的典型代表,相比于石墨烯的零带隙,MoS2有着可调的带隙宽度,单层MoS2为直接带隙半导体,带隙宽度为1.8e V,随着层数的增加逐渐转变为间接带隙半导体。TMDC在构建逻辑门电路、光电探测、信息存储等方面有着广阔的应用前景。反相器是最基本的逻辑门电路,有着极低
随着我国航空航天技术的快速发展,高性能精密复杂结构构件的一体化成形逐渐成为发展趋势。其中,以新一代高超声速飞行器的隔热层为代表,作为连接外层陶瓷防热层和内层铝合金骨架蒙皮的核心构件,梯度材料点阵隔热层的一体化成形不仅有利于高超飞行器的减重,还有利于消除异质材料造成的界面突变,减少应力失配造成的安全隐患。因此,利用激光选区熔化(Selective Laser Melting,SLM)技术一体化制造由
铝合金具有质量轻、比强度高、良好的成形性和耐腐蚀性等优点,作为一种优良的轻量化材料,被广泛地应用在汽车制造领域。但是,由于铝合金特殊的物理化学性质,其焊缝容易产生焊接气孔缺陷。激光搅拌焊接作为一种新型的激光焊接技术,通过光束的搅拌作用,增加了匙孔稳定性,促进了熔池流动,有助于提升焊缝成形质量,抑制焊接气孔缺陷,为铝合金薄板搭接焊接提供了一种新型的技术手段。近年来,环境现状愈发严峻,减少制造业带来的
混合流水车间调度问题(Hybrid Flow Shop Scheduling Problem,HFSP)在现在的工业系统中是很重要的,合理的规划调度订单直接影响着经济效益和顾客满意度。一般处理HFSP的方法主要包含精确算法和基于启发式的方法。精确算法很少被用到,由于极度昂贵的计算代价,在规模大的实际问题上更是求解速度很慢。启发式算法主要是根据问题的特性和专家知识经验来手动设计一些规则,搜索框架往往
热流密度是影响航空航天飞行器中耐久性部件使用寿命的关键因素。薄膜热流计由于具有体积小、测量精度高、响应速度快等优势,在热流测量领域得到了广泛的应用。但传统的薄膜热流计制备方法主要采用磁控溅射、光刻、蒸镀等薄膜技术,需要掩模板、工艺复杂、设备成本高,特别是难以在大尺寸或曲面零件表面进行制备,制约了热流测量的发展。因此,本文首次提出将微笔直写-激光微熔覆技术应用于嵌入式热流计的制备,为无掩模、高效率制
氮化铝陶瓷具有良好的导热性,电绝缘性且介电常数低,热膨胀系数与硅匹配,是电子封装材料和面向半导体加工制造设备的陶瓷加热器材料的理想选择。凝胶注模技术具有无氧阻聚、坯体强度高、适于制备复杂形状部件的优点。本文研究了一种基于亲核加成的非水基凝胶注模成型技术以制备异形氮化铝陶瓷,较系统地研究浆料组成和制备工艺对AlN浆料流变特性和坯体强度的影响,实现了复杂形状AlN陶瓷的制备。对PECVD用一体化AlN