面向闪存的低磨损数据编码研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:liliac
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于闪存的固态盘(NAND Flash-based Solid State Disk/Drive)因其低延时、低能耗、高抗震等特点被广泛应用在便携式设备、个人计算机及企业级存储系统中,并逐渐替代传统磁硬盘,在存储市场占据重要地位。固态盘控制器通过成对的写入/擦除操作改变闪存单元电压以存储数据,每对写入/擦除操作都会对闪存单元造成可累积的磨损。然而,闪存单元能够承受的磨损是有限的,一旦足量的闪存单元所受磨损超出耐受上限,就意味着固态盘寿命的终结。随着闪存介质存储位密度的不断上升,固态盘能够承受的写入/擦除操作数量急剧下降,延长固态盘寿命成为研究热点。
  研究表明,单元电压越高,写入/擦除操作对闪存单元造成的磨损就越大。基于这一特性,提出一种低磨损数据编码方案(命名为DREAM),通过充分利用数据压缩产生的空闲区域以及带外数据区(Out-of-band,简称OOB)中的空闲区域,延长闪存的寿命。DREAM使用多个闪存单元的电压组合取代传统的单个闪存单元电压来表示数据,通过提升空闲区域中闪存单元的电压以减少其它闪存单元中高磨损单元电压的使用,从而降低单次数据擦写造成的平均磨损,进而增加固态盘能够承受的擦写次数,达到延寿效果。此外,通过引入冷热数据分区,在降低写入/擦除磨损的同时,DREAM对读性能的负面影响也能得到有效控制。
  实验结果表明,DREAM的延寿效果显著,在不同压缩率下的平均延寿效果达到了23.91%;此外,基于多种工作负载的仿真结果显示,采用冷热数据分区后,DREAM导致的固态盘平均吞吐率下降不超过2%,在可接受范围内。
其他文献
键值存储系统是当前数据中心的主要存储技术,具有高性能、高可用和高扩展性的特点,能够满足大数据环境下的数据存储需求。另外,非易失性内存(Non-Volatile Memory,NVM)是一种新型存储设备,具有数据非易失、高存储密度、高性能和高并发等特点。新型NVM设备的出现,也为研究更高效的键值存储系统带来了机遇与挑战。  基于日志结构合并树(Log-StructuredMerged-Tree,LS
基于日志结构合并树(Log Structured Merged Tree,LSM-tree)的键值存储系统以其良好的存储扩展性而被广泛地用作于各类互联网应用的存储服务。然而,互联网中数据总量的急剧增长为键值存储系统带来了新的问题。一方面,键值存储系统的缓存容量逐渐变得相对不足,而缓存往往对整个系统的性能起到关键性作用。另一方面,键值存储系统往往为多种应用提供服务,如出行类、餐饮类以及办公类应用等。
学位
互联网即将进入5G时代,智慧终端和传感器等设备产生的数据呈指数级增长,对云基础设施的需求不断扩大。键值存储系统作为非结构化数据库的代表,在数据中心扮演着举足轻重的角色,其主要存储引擎是日志结构合并树(Log-StructuredMerge-Tree,LSM树)。但测试发现,由于LSM树的L0层SST文件的键范围存在重叠,加上L0层容量控制机制,使得LSM树的合并操作会引起系统写性能周期性波动。  
学位
新型快速存储设备NVMeSSD(Non-volatile Memory Express SSD)以其高性能,低延迟的特点,逐渐替代传统硬件设备成为构建大规模高性能存储系统的首选。硬件设备变更推动了I/O软件栈的变革,为了降低I/O路径的软件开销以及充分发挥硬件性能,NVMe精简软件栈逐渐成为NVMeSSD等高性能存储设备的标配。然而无论内核NVMe软件栈还是用户态NVMe软件栈均以减少I/O请求处
在全球数据量呈现爆炸式增长的大数据时代,传统存储系统架构已成为瓶颈。NVM(Non-Volatile Memory)的出现,为解决传统存储系统内外存之间的性能鸿沟、满足数据密集型应用对内存访问的需求带来了希望。在DRAM(Dynamic Random Access Memory)与NVM混合的架构下,由于NVM在不同应用场景下需要满足不同的内存需求,使得传统用户层的动态内存分配器不再适用,需要重新
手绘草图是人类进行思想交流的媒介,在沟通和设计中都扮演着重要的角色。近年来,深度生成模型在光栅图片生成领域迅速崛起,手绘草图的生成也受到了广泛关注。Sketch-pix2seq是目前手绘草图生成领域最受欢迎的一种生成模型,但它无法捕获组件的全局位置关系,当草图组件较多时,这一问题更为严重;同时现有的草图生成模型受VAE(Variational Auto-encoder)框架的影响,很容易生成细节表
随机写请求因I/O尺寸小、存储空间离散引起存储性能下降,F2FS文件系统可将写请求从随机转换为顺序而被广泛使用。而对于具有先擦后写等特性的闪存存储,写单元为闪存页,擦除单元为闪存块,因此基于闪存为存储介质的固态盘(SolidStateDrive,简称SSD)采用异地更新的方式写入数据,并基于垃圾回收对有效数据迁移、无效数据进行回收,增加了额外的读写开销,引起写放大问题。由于F2FS文件系统仅通过简
学位
随着深度学习技术日益成熟,越来越多深度学习解决方案,如人脸识别、语音识别、自动驾驶等,进入人们日常生活。研究人员发现深度学习模型极易受到对抗样本的影响,这些对抗样本只是在原始样本上添加轻微扰动,就能使深度学习模型输出错误结果。对抗样本的存在极大地影响了深度学习解决方案的运用。现有的防御对抗样本方法大多只能防御特定、已知对抗样本的攻击,并且防御成本极高。  针对目前防御对抗样本存在的问题,本文从对抗
学位
随着信息时代快速发展,数据量呈爆炸增长,大数据应用对数据存储的容量、性能和可靠性提出了更高要求。基于闪存的固态盘因具有高性能、低功耗等优点被广泛应用。但闪存采用多位堆叠及缩小制程等方法提高存储密度,致使读操作对闪存内数据的干扰加重,读干扰逐渐成为影响闪存可靠性的主要因素。因此,如何高效地进行读干扰管理以提升固态盘的性能和寿命,成为了研究热点。  读干扰管理的方法是将受读干扰影响严重的数据进行迁移,
学位
与传统磁盘相比,基于闪存的固态盘(SSD)由于高性能、低延迟等特性已被广泛使用在消费类和企业级存储市场。影响固态盘性能的因素之一是盘内完成从逻辑地址到物理地址转换的地址映射算法。随着闪存容量的快速增长,受限于价格、工艺、能耗、体积以及可靠性等多因素影响,固态盘内置RAM的增长速度落后于闪存容量的增长速度,引起内置RAM大小不足,导致地址映射算法中映射缓存不命中和映射条目替换加剧,带来额外的闪存读写
学位