论文部分内容阅读
超磁致伸缩微纳米执行器(GMA)利用超磁致伸缩材料的磁致效应,通过改变驱动磁场,实现超磁致伸缩材料微伸缩,达到微纳米高精度定位目的。超磁致伸缩微纳米执行器已经被广泛研究与开发,其应用包括机械加工、航天、汽车等领域。传统超磁致伸缩执行器通过改变线圈电流实现超磁致伸缩材料微位移输出可调。在维持一定的微位移输出时,电流需要一直保持。此时,执行器无机械功率输出,输入功率以热的形式消耗在线圈电阻上,执行器效率几乎为零。此外,在低频(<10 Hz)输出情况下,传统超磁致伸缩执行器的效率也比较低。为了解决传统超磁致伸缩执行器在维持恒定微位移和低频工作条件下的低效问题,本论文设计了一种新型电机驱动超磁致伸缩执行器(Motor-Driven Giant Magnetostrictive Actuator, MDGMA)。该新型电机驱动超磁致伸缩执行器摒弃传统超磁致伸缩执行器线圈电流驱动方式,而是采用旋转永磁体驱动方式。传统超磁致伸缩执行器利用线圈电流改变超磁致伸缩材料内部磁通,实现微位移输出可调。而MDGMA利用旋转永磁体方式改变超磁致伸缩材料内部磁通,实现微位移输出可调。在维持恒定输出微位移时,MDGMA只要维持永磁体空间位置即可实现恒微位移输出。此时,电机不吸收功率,执行器效率远远高于传统超磁致伸缩执行器。通过理论、模拟和实验证明,MDGMA能实现低频微位移输出可调和维持恒定位移输出时的高效。论文分别从理论、模拟和实验来验证MDGMA这一概念的正确性。首先,利用磁路方法建立了数学模型,给出了输出微位移与驱动永磁体转动速度之间的关系表达式;其次,利用三维有限元计算方法验证了MDGMA这一概念,分析了不同励磁磁场、不同永磁体形状和不同旋转角度下的磁场分布;最后,在超磁致伸缩材料铁镓合金特性曲线测试及机械设计的基础上,加工制作了样机,并进行了实验验证。实验测试结果与理论分析结果高度吻合,切实验证了MDGMA这一概念的正确性。本论文所设计的MDGMA具有连续输出位移可调、发热量小和高效等优点,在高效制动装置、高精度定位平台、高精度机械加工执行器和中凸变椭圆活塞加工执行器中具有重要应用前景。