论文部分内容阅读
航天器在轨加注技术能够为在轨运行的航天器补充推进剂,延长其在轨寿命,增强其机动能力,是具有重要战略意义的前沿科学技术。板式表面张力贮箱具有推进剂管理效率高、结构可靠、可重复使用等特性,被认为是目前对航天器特别是各类卫星实施在轨加注时的首选贮箱形式,也是航天器在轨加注必须突破的关键技术之一。内角流动理论作为板式表面张力贮箱设计的基础理论,可以根据板式表面张力贮箱设计需求进行拓展,具有重要的研究价值。论文围绕航天器在轨加注这一任务背景,对微重力环境下板式表面张力贮箱内的推进剂内角流动过程以及基于内角流动理论的板式表面张力贮箱设计进行了深入研究。在结构较为复杂的板式表面张力贮箱内,不对称内角模型和弯曲路径内角模型是非常典型的结构,并且液体在这两种内角模型的流动性质具有可叠加性。因此,可将简单的内角模型进行拓展,建立不对称内角模型以及弯曲路径内角模型并进行研究。论文的主要研究工作总结如下:(1)根据板式表面张力贮箱及推进剂管理装置(Propellant Management Device,PMD)内普遍存在的结构,建立了不对称内角模型,并引入虚拟内角的概念,利用理论分析和数值计算的方法分析了液体在不对称内角的流动过程。基于所建立的数学模型,可以对液体在不对称内角的流动过程进行精确的计算和预测。(2)利用落塔的微重力实验环境,对几个不对称内角模型进行了液面定位过程实验,分析了微重力环境下液体在不对称内角的流动性质,并把实验结果和理论结果进行对比,验证了所提出的内角流动模型的正确性。(3)根据球形或椭球形板式表面张力贮箱的设计需求,建立了弯曲路径内角模型。通过对液体在弯曲路径内角的流动方程进行深入分析及流动过程仿真,得出以下结论:a)弯曲路径内角的流动性质和一维内角流动相似;b)初始液面截面积相等时,在弯曲路径内角流动中液体的流动速度要比一维内角流动快;c)初始液面截面的截面积越大内角流动的速度越快。(4)根据不对称内角流动以及弯曲路径内角流动的研究结果,结合两种模型的性质,对板式表面张力贮箱内的推进剂定位过程与加注过程进行计算,分析导流板的布局、数量以及结构等因素对推进剂流动的影响,并对板式表面张力贮箱及PMD结构进行了设计和优化,得出了能够使PMD效率最高的优化构型。在此基础上,综合考虑推进剂加注过程稳定性、推进剂填充率等因素设计了一款可用于航天器在轨加注的小型板式表面张力贮箱。(5)针对所设计的板式表面张力贮箱,建立了板式表面张力贮箱内推进剂的流动仿真模型,采用数值仿真的方法对板式表面张力贮箱内的推进剂定位过程和加注过程进行了模拟,验证了板式表面张力贮箱及PMD的推进剂管理性能。本文结合内部结构较为复杂的板式表面张力贮箱设计需求,较好地拓展了内角流动理论,并完成了板式表面张力贮箱的设计、优化与性能验证。论文的研究成果既丰富了我国的贮箱设计理论,又能够为航天器在轨加注技术的发展提供较好的参考,具有重要的理论意义和工程价值。