车联网中基于移动边缘计算的任务卸载算法优化

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:feager2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,智能交通行业蓬勃发展,对于车联网中车辆终端所请求任务的处理性能不断提高。但传统云计算的大数据系统架构无法满足智能交通系统(Intelligent Traffic System,ITS)应用程序的低延迟要求,针对其弊端,将移动边缘计算(Mobile Edge Computing,MEC)集成到通信网络架构中可以提高车联网中复杂任务的处理能力,同时降低任务的处理延迟。但是常规的任务卸载方式大多是在移动边缘计算服务器上执行,并且对卸载任务的类型没有较为明确的分类。在这种情况下,如何设计一种有效的卸载决策以充分利用本地资源和服务器资源成为亟待解决的问题。本文研究了车联网环境下基于移动边缘计算的任务卸载算法优化。主要研究内容如下:首先,针对目前移动车辆终端计算资源不足难以满足可靠性和低时延需求的问题,引入软件定义网络架构实现资源集中控制和分配,同时将计算资源分配和任务卸载决策变量作为可调参数,建模为网络时延和能耗的加权和最小化的优化问题。由于该问题是一个NP-hard优化问题,采用次优方案将其分解成两个子优化问题进行求解,提出一种基于分支定界法的任务卸载算法,该算法采用拉格朗日乘数法求解计算资源分配问题,以安全消息任务的最大容忍时延为优先级进行排序,运用分支定界法得到最优的卸载决策。仿真结果表明,本文所提出的基于分支定界法的卸载算法与传统任务卸载算法、能量最优卸载算法相比,其处理时延均有降低。其次,考虑到现有工作中将任务卸载建模成二选一问题(即本地计算或卸载到MEC服务器)、缺乏灵活性的缺点,本文假定任务可分割并同时优化任务分割因子和卸载决策,将MEC系统目标建模为最小化时延和能耗加权和的优化问题。接着,提出基于Q学习的部分卸载算法,具体而言,该算法首先根据时延和计算资源需求对车辆终端进行分类,将时延极其敏感的任务放在本地卸载,将需要计算资源量大的任务卸载到MEC服务器进行计算,然后将剩下的任务进行部分卸载,运用Q学习得到最佳的卸载决策。仿真结果表明,本文提出的分类部分卸载算法极大地降低了算法复杂度。
其他文献
目的:为进一步了解Dkk1在前列腺癌中的表达及在临床预后中的意义,同时探索Dkk1在前列腺癌骨转移过程中所发挥的作用,为前列腺癌的诊断和治疗提供新的方向。方法:通过构建前列腺癌细胞株,比较不同转移潜能前列腺癌中Dkk1蛋白质表达差异,通过在组织芯片和石蜡切片中进一步比较正常前列腺组织与前列腺癌组织中Dkk1的表达差异。最后利用公共数据库数据,通过SPSS和R等软件进行临床特征和生物信息学分析,探究
目的:本实验通过研究在丹参注射液作用下,血管内皮生长因子(VEGF)、整合素αvβ3在子宫内膜中的表达情况,进一步探索丹参注射液对子宫内膜容受性的影响。方法:收集2020年01月-2020年12月于贵阳市妇幼保健院行宫腹腔镜联合探查术的25例不孕症患者的子宫内膜组织,其中:输卵管梗阻患者9例、PCOS患者8例、子宫内膜异位症患者8例,术后病检子宫内膜增殖期13例,分泌期12例。无菌条件下将取出的子
泽那基斯既是二十世纪作曲大师,也是建筑大师,其双重身份对其音乐创作影响至深。本文通过分析管弦乐作品《Jonchaies》,试图就其音高形态与有机建筑形态进行解析和比对,解读泽纳基斯的音乐创作与建筑形态观的关联和融合。
随着无线通信技术的高速发展,用户在通信过程中对系统安全性能提出了更高的要求。无线网络给用户带来便利性的同时也存在安全隐患,其开放的通信环境使得无线传输很容易受到被动窃听、主动干扰等恶意攻击,这激发了广大研究工作者寻求利用物理层信道特征来提高系统安全性能。本文主要研究了在多用户无线通信网络中的物理层安全问题,通过引入人工噪声、智能反射面等关键技术,并结合多用户调度、功率分配优化等方法,提高多用户无线
基于神经网络对图像中篡改现象进行检测的方法在数字图像取证领域具有巨大的优势,而目前只采用目标检测模型完成鉴别任务的相关工作较少。本文以人脸篡改检测为目标场景,提出相关方法,并在场景中的验证其效果,分析其优劣处,主要工作如下:(1)针对单一识别网络对篡改图片识别性能低的问题,在YOLOv4模型基础上提出一种融合多源视觉线索的人脸篡改检测模型。首先采用多种滤波器提取图像频域和噪声域的特征,并将提取到的
近年来,随着智能移动终端数量的急剧增长,移动通信系统对通信传输速率以及通信设备接入量的需求也日益增加。而多输入多输出(Multiple Input Multiple Output,MIMO)技术和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术对空间资源和时/频域资源的充分利用为目前通信系统中的高速率传输和大规模连接提供了坚实基础。因此,本文围绕MIMO
随着中国经济的飞速增长,社会各界对于发票的需求也随之增加。发票是各个工作单位的财务部门核对经济活动并进行报销的重要凭证。目前发票报销流程繁琐、效率低下,且需要大量的财务人员,极大的浪费了社会资源,因此发票报销的智能化是大势所趋。本文利用计算机视觉软件库和深度学习方法,完成了对发票图像的校正、分类等任务,并组合硬件设备实现了发票报销的全过程。首先,本文根据发票的不同特征,完成不同倾斜图像的校正。针对
随着私家车的普及,因危险驾驶行为导致的交通事故日益增多,基于视频的危险驾驶行为检测技术具有重要的应用研究价值。危险驾驶行为具有自发性与偶然性,采用传统视频行为检测方法检测驾驶员行为难免会造成信息滞后。并且驾驶员行为蕴含时序特征,对驾驶员行为进行高效的建模也是行为检测中重要的挑战,想要实现基于视频的危险驾驶行为检测技术并非易事。本文从计算机视觉的角度出发,以视频帧,视频时空特征、时空注意力机制为切入
随着全球气候变化的加剧与城市化进程的加快,极端降雨事件的频率和强度都进一步增加。暴雨引发的城市内涝灾害,往往造成城市交通中断、经济损失,甚至是人员伤亡。因此,如何在降雨过程中捕捉道路交通异常,掌握强降雨事件对城市交通及人群的影响,对降低道路交通风险和保障城市运营具有重要意义。随着浮动轨迹数据、图像监控数据等多源感知数据的丰富,道路交通的研究有了新的视角和数据基础。鉴于此,本研究结合浮动车轨迹等多源
四旋翼无人机由于其结构简单、价格低廉以及灵活机动等特点,被广泛应用于各行各业。随着执行任务的日趋复杂化,单个四旋翼无人机已经无法满足人们的需求,因此多四旋翼无人机的协同控制问题逐渐受到了专家学者们的关注,并且在过去几十年中取得了大量的研究成果。如何使各无人机状态达成一致的同时,使得控制性能达到最优是目前的研究热点之一。自适应动态规划方法能够克服传统动态规划中“维数灾”的问题,可以有效的解决非线性系