CsPbBr3量子点掺杂液晶的光电性能

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:syysyysyy1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
液晶(Liquid Crystals,LCs)在现代电子学中占有独特的地位,因为它已成为液晶显示器(Liquid Crystals Display,LCD)、光调制器、光学和生物传感器等器件中必不可少的组成部分。纳米粒子掺杂液晶可以改善其光电性能,提高液晶器件的响应。其中量子点掺杂不仅对液晶的性能有所提高,量子点还由于自身的尺寸均匀性和荧光可调的性质拓宽了液晶的应用范围。全无机卤化物CsPbX3(X=Cl,Br,I)钙钛矿量子点(Perovskite quantum dots,PQDs),具有的电学和光学性能,在很多器件上有应用。例如:相对较高的量子效率(90%)和窄带发射(半峰宽约20 nm),尺度依赖的发光特性可以覆盖整个可见光谱(400-700 nm),使它们成为用于众多光电领域的有吸引力的材料,如LED,太阳能电池板,生动的彩色显示屏等各种设备。本文首先通过热注入法合成Cs4PbBr6量子点,它具有两个明显的吸收峰但是无荧光峰,Cs4PbBr6 PQDs通过水解生成CsPbBr3 PQDs。CsPbBr3 PQDs对于极性溶剂水、氧、光、热等稳定性差,因此需要增强稳定性,扩大它的应用范围。这里选用Si O2对CsPbBr3 PQDs进行改性来提高其稳定性。改性后的CsPbBr3PQDs的吸收峰和荧光峰位置不变,晶体结构也不变,即Si O2对CsPbBr3 PQDs的改性没有破坏它的结构和光学性质,但是光稳定性和荧光寿命增加,Si O2对CsPbBr3 PQDs的稳定性起到了增强作用。为了提高液晶的光电性能,探究了CsPbBr3 PQDs对向列相液晶(E7)的光电性能,将合成的CsPbBr3/Si O2 PQDs复合材料通过高速震荡的方法分散在液晶里。在无取向的液晶盒里,观察到CsPbBr3/Si O2 PQDs可以诱导液晶垂直排列,而在平行取向的液晶盒里没有观察到此现象。由于PQDs的长烷基配体与液晶相互作用,液晶分子倾向于垂直于PQDs表面排列,扰乱了液晶的有序性,降低了液晶的清亮点。将PQDs掺杂到液晶中,可以发现随PQDs浓度的增加介电各向异性(Δε)、弹性常数(K11)和阈值电压(Vth)而逐渐降低,这为许多光电器件降低能耗提供了可能。CsPbBr3 PQDs不仅可以作为纳米材料改变液晶的物理性能也可以作为发光材料作用在胆甾相液晶中,使器件的响应时间和弛豫时间减小。通过施加电场来控制CsPbBr3 PQDs的荧光强度,在此系统里CsPbBr3 PQDs可以稳定存在并能获得高的荧光强度对比度。量子点掺杂液晶拓展了液晶在光电器件的应用。
其他文献
无设备定位(Device-free localization,DFL)系统因为比有设备定位(Device-enabled Localization,DEL)系统更便于投入使用而引起了广泛关注,并且基于指纹的定位方法通常被应用DFL系统中。尽管在基于指纹的定位方法中可以通过通道状态信息得到细粒度的信息,但是随着时间的变化环境也会产生相应的变化,这可能导致信道状态信息(Channel State In
宽带、多模式的无线通信系统在如今的信息时代中扮演着越来越重要的角色,其中,天线和滤波器是宽带无线通信系统中的关键器件。目前,平面电路和金属腔体是天线和滤波器使用的两种常见结构,平面电路在系统集成,轻量化等方面具有一定优势;而金属腔体则在低损耗,高功率容量,抗辐射干扰,抗老化方面有着难以替代的优势,因此一直是微波电路与天线领域的研究热点之一。本文基于腔体多模理论,面向滤波器的小型化需求和天线的宽带需
边缘检测是图像处理的关键技术之一,边缘信号的准确提取为后续的目标识别、目标追踪等技术提供了基础和保障。边缘检测算法经过多年的研究与发展变得越来越成熟,但同时程序执行的工作量也在不断攀升,使得程序处理时间增长,传统软件串行处理方式越来越无法满足实时处理的需求。在雾霾环境下用传统的边缘检测算法直接进行边缘提取时会出现大量边缘丢失的问题,针对这种情况,本文设计了一种结合图像增强的边缘检测算法,并利用FP
我国电力资源主要分布在西北、华北地区,而耗电量较大的省份集中分布在华东、华中地区。为满足工业互联网、5G等新技术的用电量需求,电力杆塔的架设越来越密集,随着电网规模的迅速扩大,对于输电线路跨区域的安全运行要求也越来越高。然而近年来频繁出现因电力杆塔倾斜、倒塌造成的电力事故,对电力系统的稳定运行造成了一定威胁。本文针对电力杆塔倾斜度的在线监测问题,研制了一种基于北斗的电力杆塔倾斜度监测装置,进行了大
随着信息化社会的高速发展,地面网络已经不能完全满足人们对通信服务的需求。卫星通信作为地面网络的补充和延伸,是实现全球无缝网络通信的重要组成部分。卫星通信具有建设速度快、不易受陆地灾害影响和保密性强等优点,在抗险救灾等场景中的作用无可替代。由于卫星资源稀缺,人们往往希望将卫星资源利用到极致。然而,大量用户接入同一卫星容易产生拥塞,因此急需解决用户终端对卫星的随机接入引起的拥塞问题。同步地球轨道(Ge
当前,情感计算(Affective Computing)在人工智能(Artificial Intelligence,AI)领域,扮演着重要的角色,而脑电信号(Electroencephalograph,EEG)在反映人类情绪状态上有着非常大的优势,已经被广泛地应用于情绪识别。近几年以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习技术被越来越多地应用
北斗卫星导航系统是中国自主研发、独立运行的全球定位系统。随着导航技术的不断成熟,对定位精度都有了更高的要求。在定位过程中,削弱多路径效应、探测与修复周跳,动态定位过程中的姿态角解算是高精度定位的重要技术支持。为了实现北斗系统的高精度定位,本文具体研究的内容如下:(1)为了削弱多路径效应对定位精度的影响,本文采用数据后处理方式,先用最小二乘法迭代出初始位置,利用改进的卡尔曼滤波算法对系统噪声和量测噪
“十三五”期间,我国建设了世界最大的信息通讯网络,互联网基础设施建设全面推进。截至2020年12月,我国手机网民规模将近10亿人,移动应用增长势头趋于稳定,亟待规范APP设计流程,提升用户使用体验,给移动应用带来新的增长点。研究将优化交互设计路径为切入点,强化设计过程中的理性推导能力,减少对感性因素的依赖。本文以公理设计原理和方法为基础,基于公理设计框架映射交互设计流程,解构了公理设计的用户域、功
傅里叶叠层成像技术(fourier ptychographic microscopy,FPM)是2013年之后提出的一种新型超分辨率成像技术。傅里叶叠层成像技术主要由结构照明、叠层成像、相位恢复三个部分构成,首先通过采集端获取大量低分辨率图像,再利用空域和频域中的约束条件进行迭代来实现样本的大视场、高分辨率图像的重构。但传统的傅里叶叠层成像技术仍然存在着采集的低分辨率图片质量差,算法计算成本高,迭
随着计算机网络、物联网和便携式通讯设备的普及,当今社会正处于信息爆炸的时代。复杂多样的通讯环境,使信息安全问题受到了广泛关注。真随机数生成器(True Random Number Generator,TRNG)和物理不可克隆函数(Physical Unclonable Function,PUF)是基本的安全原语,广泛存在于数字签名、证书生成和芯片认证中,并作为公钥、初始化向量、填充值在信息安全领域