【摘 要】
:
随着移动通信服务的重要性日益凸显,人们对在任何时间任意地点的在线服务具有了越来越强烈的需求。天地一体化网络融合了原来互相独立的地面通信网和卫星通信网,可以有效的满足人们在世界各地随时在线的需求。由于一体化网络需要传输各种不同的业务,传统的在同一物理网络上传输不同服务等级业务的方式造成很低的传输效率及很大的资源浪费。网络切片技术通过虚拟化技术实现在同一物理资源上创建不同的子网,子网中独立传输不同类型
论文部分内容阅读
随着移动通信服务的重要性日益凸显,人们对在任何时间任意地点的在线服务具有了越来越强烈的需求。天地一体化网络融合了原来互相独立的地面通信网和卫星通信网,可以有效的满足人们在世界各地随时在线的需求。由于一体化网络需要传输各种不同的业务,传统的在同一物理网络上传输不同服务等级业务的方式造成很低的传输效率及很大的资源浪费。网络切片技术通过虚拟化技术实现在同一物理资源上创建不同的子网,子网中独立传输不同类型、不同服务等级的业务,可以有效的提升网络服务效率,提高用户服务质量。针对天地一体化网络中业务种类更加多样、网络需要克服卫星系统巨大的服务延迟、卫星接入网时频资源变化剧烈的特点,本文着重研究了天地一体化网络中网络切片的结构和接入与核心网的资源调度管理技术。论文首先研究了天地一体化网络中基于切片技术的端到端(E2E)网络构建方案,该方案提供了一种网络切片实现架构,支持在卫星和地面之间进行灵活的网络部署。随后研究了用于端到端网络切片的管理技术,包括切片关键性能指标(KPI)设计,切片部署和切片管理。针对天地一体化核心网,基于kubernetes实现核心网网络切片的设计与实现,验证了kubernetes平台应用于网络切片的可行性。同时根据5G切片业务信令流程得出天地一体化核心网切片业务信令流程,同时对切片业务的响应时间随资源的变化进行仿真得到天地一体化核心网切片业务响应时间变化。针对天地一体化网络中,用户的业务量在不同的时段,不同的地区呈现较大的波动,相应的核心网中的切片请求也会不断的波动,因此我们这里是一个动态的资源分配问题,为此本章提出采用强化学习的方法解决天地一体化核心网中的切片资源映射问题最后针对卫星接入网的资源调度,研究了基于请求和决策的片间资源管理策略,提出了一种基于遗传算法的资源管理优化策略,该方法将接入切片策略编码为二进制序列,以应对请求和决策机制。相较传统方法,提高了接入成功率。
其他文献
太赫兹通信系统可以分为基带部分和射频部分。本文主要对基带部分进行研究,目的在于设计出能生成大带宽信号并有效抵抗多径、频偏等多种干扰的基带系统,进而稳定地实现高速无线通信。本文的主要贡献如下:第一,分析应用场景和性能需求。本文所设计通信系统用于点对点通信场景。该场景下通信信道较为稳定,可以用AWGN信道近似模拟,所以时域均衡方案是可行的。而且,点对点通信常用于远距离通信场合,所以信号峰均比不能太高。
太赫兹(Terahertz,THz)波是指频率在0.1THz~10THz(波长在0.03mm~3mm之间)范围内的电磁波。太赫兹技术是一个非常重要的交叉前沿领域,其应用非常的广泛,如THz时域光谱技术、THz成像技术、安全检查以及生物医学等。近些年来,太赫兹科学技术随着其产生机理、技术检测及应用技术等方面的进步而得到了飞速发展。在太赫兹科学技术中,太赫兹源是所有科学研究与应用的基础,真空电子学是产
随着企业数据量的不断增长,企业开发应用架构向微服务架构演进,微服务架构将业务模块切分为应用服务,不同的应用服务间通过分布式事务保证数据的一致性。然而传统的分布式事务很难应用于微服务架构中,因此,研究基于微服务架构的分布式事务具有重要的意义。相比传统关系型数据库,MongoDB的复制集、分片集群的独特设计,使其具有较好的扩展性和可用性。然而MongoDB在一次全局事务处理过程中,会长时间锁定资源,影
机动目标跟踪是雷达信号处理领域研究中的热点课题之一,随着各类目标的机动性不断增强,对目标进行实时有效的跟踪变得越来越困难。“迎头转尾追”是防空导弹作战过程中敌方目标典型的一种逃逸方式,导致导引头无法连续稳定跟踪目标。本论文针对线性调频脉冲体制雷达导引头,对迎头转尾追空中目标开展回波建模仿真与跟踪方法研究。主要研究内容包括以下几部分:1、雷达基本原理和信号处理方法。从雷达的分类、组成以及常用测量参数
二十一世纪以来,随着集成电路的迅速发展以及其代工厂工艺节点的不断缩小,我们的工作和生活早已与集成电路密不可分。5G、自动驾驶、工业控制、物联网等新兴产业更是依赖于集成电路,而其中微控制单元(MCU)则是必不可少的核心模块之一。目前绝大多数MCU产品都是基于ARM公司提供的CPU针对不同的应用场景进行设计,最为普遍的是八位和十六位的MCU,能够基本满足中低端的市场需求,但是在未来,高效、低功耗的三十
在比较高功率微波器件的效率时,常常会忽略聚焦系统所需的功率和能量,而这些能产生磁场的聚焦系统所消耗的能量,体积和重量往往都比高功率微波器件本身大,且在工程应用中变得越来越不实用。永磁聚焦系统在体积和重量方面仅为传统电容系统的五到十分之一,而且还有一个更加明显的优点是永磁聚焦系统不消耗任何功率,所以高功率微波器件做成永磁包装后,能够扩大其应用范围。本文对S波段相对论速调管永磁包装技术进行研究。根据本
在数字电路中,控制设备是整个设计的一个重要的环节。在现代化的设计中,一般都会选择采用微控制器(MCU)作为控制模块,并且也占有很大的市场分额。但目前国产的MCU竞争力稍显不足,对于MCU的深入研究也显得十分必要。本文主要内容为基于高层次设计的MCU的研究,使用更加抽象的硬件描述语言(CHISEL)与各种EDA工具的相互协同完成工作。目前,大部分的MCU都选用Cortex系列的芯片实现控制功能。但是
随着人工智能以及5G技术的快速发展,在智能驾驶中高级辅助驾驶系统(ADAS)应用研究也加速发展。智能传感器硬件平台和高性能决策算法是实现ADAS系统的重要组成部分。在汽车领域里,要达到车规级标准,满足安全性、可靠性、准确性,这对于合适的硬件和高性能算法的提出有着较高的要求。尽管毫米波雷达以及激光雷达在ADAS领域内得到广泛的应用,但是也存在成本高、缺乏辨识能力、视觉信息少等缺点。鉴于此,本文主要提
和传统的固体和气体激光器相比,光纤激光器具有光束质量好、体积小、转换效率高、散热效果好等优点。在近红外波段,光纤激光器和光纤拉曼激光器已经广泛应用于通信、工业、医疗国防等领域。在3μm波段应用同样广泛,但是在该波段短脉冲光纤激光器的发展还存在诸多问题以及空白需要探索。本文围绕3μm波段锁模和增益调制两种技术手段,实现了稀土掺杂离子氟化物脉冲光纤激光器。首先,本文介绍了3μm波段光纤激光器的应用,叙
航空航天工程师我国未来发展方向之一,而航空航天对我国的发展有着不可缺少的促进作用,在如今生活的方方面面,中国人民也享受这航空航天技术发展所带来的便捷与高效。除了航空航天领域的发展,在数字化当下的今天,各种设备的的便捷化,简便化及其自动化都离不开集成电路领域的发展,电子芯片因为其快速的运转速度和其可靠的功能性,让集成电路被应用于如今几乎全部的领域内。近年来,电子器件被越来越多的应用到太空之中,对于目