基于CNTs-明胶分散体系的纳米复合水凝胶与柔性传感器

来源 :天津大学 | 被引量 : 0次 | 上传用户:sunjing123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳纳米管(CNTs)导电纳米复合水凝胶具有良好的导电性、柔韧性及优异的机械性能,是构建可穿戴设备和智能皮肤系统的理想材料之一。然而,由于CNTs在水凝胶中容易团聚,导致水凝胶力学性能及导电性能下降,限制了其在柔性传感领域中的应用。针对这一问题,本论文旨在改善CNTs在水凝胶中的分散稳定性,赋予纳米复合水凝胶优异的机械强度和多功能性,研究开发基于CNTs纳米复合水凝胶的柔性机械传感器,提高其传感性能并拓宽应用范围。首先通过明胶与CNTs之间的多重物理相互作用,形成CNTs-明胶分散体系,改善CNTs在水凝胶中的分散稳定性。随后将CNTs-明胶分散体系和聚丙烯酰胺(PAAm)水凝胶相结合,制备了PAAm/CNTs导电纳米复合水凝胶。对所得水凝胶的结构及力学性能进行表征,结果表明PAAm/CNTs导电纳米复合水凝胶具有良好的拉伸性能(传感范围>700%)、高拉伸强度(0.71 MPa)、良好的自恢复率(90%)和优异的传感性能。此外,由于CNTs在水凝胶中形成的导电通路,PAAm/CNTs水凝胶表现出优异的应变敏感性(应变为250-700%时的应变灵敏系数GF=3.39)、快速响应性(300ms)和良好的耐久性。所制备的应变传感器可以通过稳定且可重复的电信号检测人体的运动(如肘部弯曲、手腕弯曲、膝盖弯曲、吞咽和发声),表明其在人机交互和个人健康监测中的潜在应用。为了进一步延长CNTs纳米复合水凝胶的使用寿命,并拓展其在水下传感领域中的应用。我们将CNTs-明胶分散体系引入到聚甲基丙烯酸磺基甜菜碱(PSBMA)网络中,制备了具有快速自愈合能力(约30s)的PSBMA/CNTs纳米复合水凝胶。基于其较高的应变敏感性(GF高达10.35)和压力敏感性(高达0.256 k Pa-1),PSBMA/CNTs水凝胶可以作为应变和压力传感器来精确监测人体运动。同时,PSBMA/CNTs水凝胶传感器具有明显的抗溶胀特性,可以检测水下人体的运动。该研究为构建具有应变和压力传感能力的自愈合水凝胶传感器提供了一种可行的方法,为水下人体运动传感器的研制奠定了基础。
其他文献
硫化氢(H2S)是工业生产环境中的主要污染物之一,与人体生理健康密切相关。然而,大多数报道的以传统发光材料为荧光团的分子探针,在聚集状态下通常显示出典型的聚集荧光淬灭(ACQ)现象,极大限制了它们在固态条件下的进一步应用。因此,实现传统荧光团从ACQ到聚集诱导发光(AIE)的转化,开发新型AIE荧光分子探针具有重要意义。本文设计并合成一系列具有AIE特性的萘酰亚胺类荧光团(o-TPANI-OH,o
学位
酵母自主复制元件(Autonomously replicating sequence,ARS)是酵母染色体上起始基因组复制过程的功能元件。ARS的复制能力与承载DNA片段之间的相互关系尚不清晰。本研究主要探究不同DNA片段对于ARS复制能力的影响规律,展开如下工作:1、研究酿酒酵母不同ARS的复制效率差异。以I号染色体上的ARSs为例,利用整合不同的ARSs的质粒丢失率表征ARSs的复制效率,结果
学位
生物乙醇作为一种可再生能源,其需求量因乙醇汽油的大规模应用而与日俱增,因而从含有低浓度生物乙醇的发酵液中高效分离乙醇的方法备受关注。全硅MFI型分子筛膜因其特有的直孔道及疏水性能够选择性地让乙醇透过,被认为是解决这一分离难题的有效途径。超薄、致密以及稳定性高的全硅MFI型分子筛膜的制备成为近年来广泛研究的课题。本文以长碳链双头季铵盐[C22H45-N+(CH3)2-C6H12-N+(CH3)2-C
学位
在自然界中,微米级单细胞生物的游泳运动广泛存在,对其游泳机制的研究有助于理解微生物的生长、分裂与捕食。同时,理解游泳机理有助于指导和设计人工合成鞭毛,以实现对微米级物体的定向运输,并可运用于药物靶向治疗。此外,研究微生物的游泳方式对于补充和完善流体力学具有重大价值。在微观流体力学中,通常情况下,雷诺数远小于1,这意味着Navier-Stokes方程中的惯性项相对于粘性项可忽略不计,该方程表现出时间
学位
位点特异性DNA反转系统是一种位点特异性重组系统,该系统只介导反向位点之间DNA片段的反转,而几乎不介导同向位点之间DNA片段的删除。位点特异性DNA反转系统通过细菌中的程序性重排,在产生遗传多样性和表型适应性方面发挥着重要作用。然而,到目前为止,还没有在真核生物中发现和创建这种位点特异性DNA反转系统。基于细菌天然的Rci重组酶和sfxa101位点在酿酒酵母中构建位点特异性DNA反转系统,发现细
学位
基于电活性微生物双向电子传递(EET)的微生物电化学系统在化工、能源和环境等领域都有重大的应用潜力,然而电子传递速率低下是限制这些应用的核心瓶颈。模式产电微生物希瓦氏菌主要通过细胞色素和核黄素介导直接和间接电子传递,基于其EET机制已经有很多合成生物学和材料工程手段,从电子生成、跨膜传递和生物膜形成角度提高其电子传递速率。然而,调控细胞大小对希瓦氏菌电子传递速率影响机制的研究却仍未报道。本研究针对
学位
近年来,由于低成本,环境友好性以及在防伪,传感,成像和发光二极管方面广泛的应用,纯有机室温磷光(RTP)材料与热活化延迟荧光(TADF)材料的开发成为研究热点。然而,目前大多数纯有机RTP材料的研发局限于单发射分子及重原子参与,因此多性能的无重原子纯有机室温磷光材料,尤其是表现出长寿命室温磷光(p RTP),白光发射,刺激响应的室温磷光材料非常稀缺,亟待进一步开发与研究。本课题基于5,5-二氧化吩
学位
聚合物材料因轻质、易加工、电绝缘、低成本、化学稳定性好等优点,在微电子器件、发光二极管、航空航天、能源化工等领域有着广泛应用,然而大多数聚合物较低的本征导热性能限制了其进一步发展。本文制备了两种高性能导热聚合物复合材料,系统研究了复合材料的导热性能、电绝缘性和力学强度,并采用理论模型阐释了复合材料的导热性能增强机制,探索了其在热管理领域的潜在应用价值,主要内容和研究成果总结如下:基于表面改性与协同
学位
随着全球能源和环境问题的日渐突出,研究人员正在努力进行新型清洁能源技术的探索和开发,例如电解水技术、燃料电池以及金属-空气电池等。作为这些能量储存与转化技术的核心反应,电化学析氢反应(HER),析氧反应(OER)和氧还原反应(ORR)等迫切需要高效稳定且成本低廉的催化剂,以促进反应高效进行。本研究基于金属有机骨架(MOFs)材料设计合成了两种金属-碳基复合材料电催化剂,并分别用于电化学HER和OR
学位
鼓泡塔作为典型的多相流反应器在有机合成、生物制药、药物筛选、石化冶金以及环境工程等领域被广泛应用。对鼓泡塔反应器中内流场特性及状态,如气液两相湍流模态、相速度分布特征、相含率分布特征和分散相分散状态的研究,对深入了解气液内部传递现象,优化现有反应器和操作工艺参数以及设计新型反应器具有十分重要的意义。计算流体力学(CFD)的快速发展为揭示复杂的反应器内流场提供了区别与传统实验方法的新手段。本文采用数
学位