论文部分内容阅读
M50Ni L钢是新一代的高强轴承钢,广泛应用于航空制造业等高端装备制造业。对于轴承而言,其失效形式主要为接触疲劳失效和磨损失效,因此要求其具有优异的表面性能。然而目前对于M50Ni L钢的表面改性技术却鲜有报道。如何在轴承钢表面获得超细化的组织且较深的改性层一直以来是化学热处理的研究热点。本文针对M50Ni L钢稀土氮碳共渗层的高强韧性的性能要求,将等离子体稀土氮碳共渗技术应用于M50Ni L钢的表面改性。基于循环相变超细化思想,设计了变温循环稀土氮碳共渗工艺,以期实现共渗组织超细化;同时研究了不同铁基合金低温稀土共渗过程中的稀土元素催渗机制。在不同相区对M50Ni L钢进行稀土氮碳共渗,研究温度、氮氢比及共渗时间对共渗层组织结构的影响。结果表明:M50Ni L钢a相区稀土氮碳共渗层无化合物层,共渗层微结构为粗大的板条马氏体。共渗层的相组成主要为a′N、g′-Fe4N及e-Fe2-3N,且相结构随温度变化较大,随氮氢比变化不明显。g相区稀土氮碳共渗层组织同样无化合物层,相结构受温度及氮氢比影响较大。相同氮氢比下,g′-Fe4N含量随温度升高而减少;当氮氢比为0.3:0.1 L/min时,650°C下共渗1h后,开始形成g-Fe N0.076,说明奥氏体化开始。以不同相区M50Ni L钢稀土氮碳共渗层相结构演变规律为基础,通过热力计算设计了变温循环共渗工艺,在共渗层表面上获得了纳米级的超细组织,而在共渗层内部30mm处局部得到了超细化的组织。其中,g?a相区(降温)循环共渗表面超细化组织由a′N+g′-Fe4N或单一的g′-Fe4N组成,g相区(升温)循环共渗表面超细化组织由a′N和非晶组成。M50Ni L钢变温循环稀土氮碳共渗超细化机制为:首先,g相区共渗过程中发生奥氏体化,形成g-Fe N0.076,其次在后续的降、升温循环过程中反复发生g-Fe N0.076®a′N+g′-Fe4N转变以及马氏体相变(g®a′N)。与此同时合金元素导致e和g′氮化物的稳定性下降,使其在共渗过程中不易长大,最终形成超细化共渗层组织。M50Ni L钢经不同相区稀土氮碳共渗后,硬度及耐磨性均大幅提高。磨损机制随磨损速度由氧化疲劳磨损逐渐转变为磨粒磨损和粘着磨损。其中g?a相区(降温)循环2次共渗层具有最优的耐磨性。而稀土La的加入能够抑制共渗层的脆性,提高共渗层的强韧性,增强共渗层的耐磨性。超细化共渗层耐磨性提高得益于其特殊的表面组织结构。细小的含氮马氏体+弥散析出的g′-Fe4N组织有利于提高共渗层的强韧性和耐磨性。稀土元素在化学热处理中被证实具有明显的催渗效果,然而其催渗机制尚未得到很好的揭示,尤其在等离子体低温稀土共渗中。本文的实验和热力学计算结果证实:等离子体低温稀土共渗过程中La与N之间的作用是相互吸引的。通过实验和理论计算提出等离子体低温稀土共渗过程中稀土催化机制:首先,稀土共渗过程中,在La和La Fe O3的共同作用下,使共渗表面变得粗糙,比表面积增大,有利于N的吸附;其次La对N的吸引提高了表面N的活度,与此同时通过La Fe O3对O的吸附,使得共渗表面N原子与La分离而向内深层扩散。基于对含合金元素La Fe O3晶体氧空位形成能的计算,解释了高合金钢不催渗的原因,同时提出了深层渗氮钢的设计思想,即:深层渗氮钢的成分选择上应含有适量的Ni元素,同时应尽量减少Cr、Mo、V等元素的含量。