论文部分内容阅读
在冶金、矿山、交通、水泥等行业,磨损失效是工程结构件三大失效形式(断裂、磨损、腐蚀)之一,造成了巨大的安全隐患和经济损失。熔覆涂层能够改善材料表面化学、物理性能,提高结构件抗磨能力,在工业中得到广泛应用。主要制备工艺有等离子熔覆和激光熔覆,等离子熔覆具有涂层组织致密、与基体冶金结合等优点,设备制造和维护成本较低,成为发展修复和再制造技术,提高机械产品使用寿命的重要方法。金属Ni具有良好的塑韧性和耐腐蚀性,与钢铁热膨胀系数相近,是良好的复合涂层基体材料;TiB2、TiC陶瓷具有高硬度、高强度和良好化学稳定性的优点,加入复合涂层中可大幅提高涂层耐磨性。本文采用等离子熔覆技术在Q235低碳钢表面制备了 TiB2+TiC复合强化Ni基耐磨涂层,分析了涂层物相构成及组织演化规律,研究了陶瓷含量、熔覆速度和磨损条件对涂层耐磨性的影响;在此基础上制备以Ti2SC为减摩组元的Ti2SC/TiB2+TiC/Ni自润滑涂层,对其组织和摩擦学性能进行了研究;探索采用烧结-等离子重熔两步法制备高陶瓷相含量涂层,合理控制陶瓷相形态和尺寸,对高陶瓷相含量涂层组织及耐磨性能进行了研究。采用等离子熔覆工艺制备了不同陶瓷含量TiB2-TiC/Ni复合涂层,其主要组成物相为TiB2、TiC和γ-Ni。原位生成TiB2为矩形或六边形状,TiC呈不规则块状,在涂层组织中均匀分布,随着Ti+B4C含量增多,原位生成TiB2、TiC含量增多,尺寸增大。建立了不同熔覆速度等离子熔覆热场模型,与试验结果对照研究发现熔覆速度由380mm/min下降到152 mm/min,熔池冷却速度变慢,涂层形核驱动力下降,熔深增大,稀释率上升,导致强化相数量减少,尺寸增大,TiB2容易沿密排晶面{0001}二维生长成为六边形片状;通过熔池温度场分布云图证明涂层熔覆速度小于228 mm/min时,涂层与基体之间可以形成紧密冶金结合,模拟与试验结果一致。当Ti+B4C含量从0~50%(质量分数),随着涂层TiB2、TiC含量的增加,涂层磨损机理发生转变:磨粒+黏着磨损→微切削→微切削+增强相脱落,在40%含量获得较好耐磨性;通过不同熔覆速度涂层的磨损试验看出:228mm/min熔覆速度涂层具有较好的耐磨性,在较高熔覆速度下涂层脆性较大,在较低熔覆速度下涂层中强化相尺寸较大,容易诱发应力集中,380 mm/min和152 mm/min熔覆速度下涂层分别发生了由较大脆性和应力集中而导致的剥层磨损。研究了载荷(30N、60N和120 N)和摩擦副(AhO3陶瓷球、不锈钢球)对涂层磨损过程和磨损机理的影响,Al2O3陶瓷球为摩擦副时,低载荷下(30N)表现为微切削磨损形式;60N载荷时,磨损机制转变为黏着磨损的形式;当载荷增加到120 N时,磨损机制为氧化磨损和剥层磨损。而采用不锈钢磨球时,涂层硬度大于对磨不锈钢球硬度,磨球表层发生剪切破坏转移到涂层表面,具有较大的黏着效应,黏着过程随着载荷的增大而加剧。以Ti、B4C、Ni和不同含量MoS2混合粉末为原料,采用等离子熔覆工艺制备了 Ti2SC/TiB2+TiC/Ni自润滑复合材料涂层,随着MoS2添加量的增加,减摩作用相Ti2SC尺寸增大,在MoS2质量分数为15%时,较多的长针状Ti2SC影响涂层组织结构连续性。通过干摩擦磨损试验发现:在磨损速度为10 mm/s时,10%MoS2含量涂层具有最低的摩擦系数和磨损率,部分拔出Ti2SC成分粘附于涂层陶瓷颗粒上,形成较好的减摩结构体。磨损速度上升到50 mm/s时,MoS2的添加使涂层在磨损过程中形成转移材料压实层的结构,随着MoS2的增加涂层的摩擦系数和磨损量下降。通过对磨损过程能量消耗,分析了减摩机制降低磨损率的能量原理,在10 mm/s和50 mm/s磨损速度情况下消耗能分别部分作用于“拔出-粘附”机制和压实层的形成过程,导致作用于涂层破坏消耗能减少,因此有利于减轻磨损破坏。通过放电等离子烧结+等离子重熔复合处理技术,提高陶瓷相含量,合理控制涂层中陶瓷颗粒尺寸和分布。首先采用放电等离子烧结技术制备TiB2-TiC/Ni复合材料,结果表明:复合材料主要物相为y-Ni、TiB2、TiC;随着Ni原料含量增加,TiB2、TiC陶瓷相尺寸减小,复合材料更加致密。Ni含量较低时(20%和30%)出现严重的疲劳磨损;随着Ni量的增加(40%),材料的摩擦系数降低且趋于平稳,表现为微切削磨损;当Ni含量持续增加时(50%)出现黏着磨损,耐磨性开始下降。在研究烧结TiB2-TiC/Ni复合材料基础上,利用烧结-等离子重熔技术制备了 TiB2-TiC/Ni复合材料涂层,采用不同等离子电流进行了重熔处理,随着电流的增加,涂层与基体结合由机械结合逐步转变为冶金结合状态,电流大于75 A时出现明显的成分过渡区,结合性较好;重熔电流为60 A、75 A时,磨损机制主要表现为磨粒磨损,涂层磨损较轻微,当重熔电流上升到90A时,TiB2颗粒长成为长条状结构,缺陷增多,磨损过程容易出现脱落,使得涂层的磨损形式转变为剥层磨损,磨损体积较大,通过研究发现烧结-等离子重熔工艺制备涂层耐磨性较等离子熔覆涂层显著提高。