论文部分内容阅读
随着高新科技的发展,产品的微型化、集成化和智能化趋势明显,尤其表现在微机电系统(MEMS)领域。MEMS等领域的快速发展,促使微小零部件的需求越来越大,微小零部件的加工工艺方法已成为多国学者的研究热点。微细电解加工方法,在理论上可达纳米级加工精度,且加工表面质量好;不受材料本身的力学性能限制,导电材料均可加工;正常加工条件下,阴极无损耗,可重复利用。由于上述诸多优点,微细电解加工被认为是一种极具发展前景的微细加工方法。本文利用高速旋转的微螺旋电极进行微细电解加工,并对此加工方式进行了理论分析及一系列钻削、铣削加工试验,本文主要完成的工作有:1、首先,对电解加工过程进行了深入分析,根据微细电解加工要求,搭建了微细电解加工试验平台;并基于高频脉冲电解加工特点,建立了电解钻削和铣削加工精度的控制模型;同时,仿真分析了高速旋转的螺旋电极,对加工电解液的影响;提出采用高速旋转螺旋电极和高频脉冲电源进行电解加工,可以提高加工效率、提高钻削加工精度及减小孔锥度;并通过微细电解加工试验得到加工精度、孔锥度和最大可进给速度随电极转速的变化关系,试验结果验证了上述理论分析。2、基于电解加工理论以及旋转作用对加工电场、流场的影响分析,提出一种加工高回转精度均匀柱状电极的方法,并基于理论和试验分析建立了电极形状以及直径的控制模型,通过模型指导加工得到了直径100μm左右,同轴度误差小于lμm的均匀柱状电极。并在柱状电极的基础上,通过分析旋转作用对扩散层离子的影响,提出初步制备微螺旋电极的方法,最后成功加工得到微螺旋电极。3、利用试验平台进行微细电解钻削加工的系列试验,研究了主要加工参数如加工电压、脉冲宽度、脉冲周期、进给速度,对加工精度和加工稳定性的影响。试验结果表明,加工精度随着加工电压、脉冲宽度的增大而降低,且在较大的参数下,会在孔口附近出现严重的杂散腐蚀,在较小的参数下,会在加工完成前出现短路现象,而降低加工稳定性;加工精度随着脉冲周期的增大而增大,在周期较小时,会在孔口附近出现较严重的杂散腐蚀,在周期较大时,易出现短路现象;加工精度随着进给速度的增加,先增加后基本不变,在过大的进给速度下易出现短路,而影响加工稳定性。最后,在优化加工参数下,成功加工得到一致性好,近乎无锥度的阵列孔。4、利用试验平台进行微细电解铣削加工的系列试验,研究了主要的加工参数如加工电压、脉冲宽度、脉冲周期、进给速度,对加工精度和加工稳定性的影响,各参数对槽宽的影响规律与钻削加工时基本类似。最后,在优化加工参数下,成功加工得到系列质量较好的直线、曲线以及复杂封闭曲线微图形结构。