论文部分内容阅读
流形学习方法作为一类新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域的研究热点。流形学习方法的非线性本质、几何直观性和计算可行性,使得它在许多标准的toy数据集和实际数据集上都取得了令人满意的结果,然而它们本身还存在着一些普遍性的问题,比如泛化学习问题、监督学习问题和大规模流形学习问题等。因此,本文从流形学习方法存在的问题出发,在算法设计和应用(图像数据与蛋白质相互作用数据)等方面展开了一系列研究工作。首先对流形学习的典型方法做了详细对比分析,然后针对流形的泛化学习和监督学习、表征流形的局部几何结构、构造全局的正则化线性回归模型、大规模数据的流形学习等几个方面进行了重点研究,提出了三种有效的流形学习算法,并和相关研究成果进行了理论与实验上的比较,从而验证了我们所提算法的有效性。全文的主要工作概括如下:(1)在深入研究局部样条嵌入算法(LSE)的基础上,引入明确的线性映射关系,构建平移缩放模型和正交化特征子空间,提出了一种正交局部样条判别投影算法(O-LSDP)。有效解决了原始LSE算法存在的两个主要问题:样本外点学习问题和无监督模式学习问题,从而使该算法能够应用于模式分类问题并显著改善了算法的分类识别能力。在标准人脸数据库上进行实验比较分析,验证了该算法的有效性与可行性。(2)在兼容映射的概念框架下,提出了一种局部多尺度回归嵌入算法(LMDSRE)。LMDSRE算法首先利用局部多维尺度分析(LMDS)构建每个样本点邻域的局部坐标来表示低维流形的局部几何结构,然后拟合正则化的线性回归模型并排列所有的局部等距坐标,从而构建全局唯一的低维坐标。该算法作为一种新的流形学习方法具有局部等距的特点,能够应用于非线性维数约简和数据可视化分析,在六个标准人工数据集和三个实际数据集上的实验结果验证了该方法的有效性。(3)针对ISOMAP算法计算复杂度高的问题,提出了一种快速等距特征映射算法(Fast-ISOMAP)。Fast-ISOMAP算法首先利用最小子集覆盖策略(MSC)从数据集中选择p个Landmark点( p n),从而在构造最短路径距离矩阵时,用p×n距离矩阵D p×n代替了原始的n×n距离矩阵Dn×n,然后运用Landmark MDS算法将所有样本嵌入到低维特征空间。与原始的ISOMAP算法相比,Fast-ISOMAP算法在不显著改变原始ISOMAP算法嵌入性能的条件下,大大提高了算法的计算效率,该算法适合应用于大规模流形学习问题。在标准数据集上的实验结果验证了该算法的有效性。(4)提出了一种鲁棒的基于快速流形嵌入的蛋白质相互作用数据可信度评估与预测新方法。首先通过对蛋白质相互作用数据进行低维流形建模,然后采用快速等距特征映射流形学习方法将蛋白质相互作用数据映射到低维度量空间,从而把蛋白质相互作用数据可信度评估与预测的生物问题转化为低维嵌入空间中数据点之间相似性度量的数学问题,最后根据蛋白质对在低维嵌入空间的相似性度量来构造加权CD-Dist可靠性指数用于评估与预测可信度。在三个由不同高通量实验技术产生的不同规模的酵母蛋白质相互作用数据集上的实验结果表明,基于快速流形嵌入的方法所获得的高可靠性相互作用数据具有更高的功能一致性与细胞组分一致性。据我们所知,本章所提出的方法首次利用了流形学习理论来解决蛋白质相互作用数据可信度的评估与预测问题。该方法有效克服了现有方法需要额外先验信息和对蛋白质相互作用网络稀疏程度敏感的问题,为检测蛋白质相互作用网络中的假阳性与假阴性“噪声”问题提供了一条新的解决途径。