论文部分内容阅读
随着我国公路工程建设进程的推进,现阶段公路建设项目主要集中在气候差异性显著的欠发达地区。为满足这些地区沥青路面的路用性能需求,往往需要使用高性能改性沥青,而SBS改性沥青高低温性能良好,在这些地区泛用性强。由于这些地区允许施工的季节区间短,SBS改性沥青路面施工过程中无法避免低温施工工况,同时低温施工条件会严重影响路面施工质量。
低温条件下路面施工质量控制不当通常会造成沥青老化、温度离析、压实不足以及层间粘结性能差等情况,从而导致路面在早期出现块状裂缝、纵向裂缝和横向裂缝、车辙、波浪拥包、坑槽与松散等病害。部分病害如车辙与纵、横向裂缝等,往往在正常施工路面通车3~5年后才会大量出现。为了控制低温施工路面质量,本文确定了竣工验收阶段的低温路面施工质量评价指标。指标分为两级,一级指标为路面压实度代表值及压实度合格率;二级指标为温度离析程度、层间抗剪强度、压密型车辙深度指数和施工缝处横向裂缝等效面积。
通过对低温条件下SBS改性沥青混合料施工温度进行研究,从而确定合理的拌和、摊铺及成型温度范围,能够有效提高低温条件下路面施工质量。
1.拌和温度。通过和易性试验确定SBS改性沥青混合料的暂定拌和温度。由于低温施工条件对施工温度的控制要求很高,合理的拌和温度在起到让胶结料与矿料充分结合的同时,也为后续的摊铺压实环节提供温度保障,所以需要对拌和温度范围进行修正,使之适用于低温施工工况。通过室内模拟试验与运输仿真模型计算,结果表明:180℃为拌和温度的安全上限,170℃为拌和温度下限。
2.成型温度。和易性试验所确定的狭窄成型温度范围不利于指导施工。通过在低温条件下进行控制初压温度的马歇尔成型试验与轮碾成型试验,分析混合料体积参数、高低温性能与力学性能等指标与温度的关系,从而确定低温条件下SBS改性沥青混合料合理的初压温度范围,并确定最低容许成型后表面温度,再通过旋转压实试验进行验证。结果表明:初压温度范围为150℃~170℃,成型后表面温度应大于115℃。
3.摊铺温度。为应对低温施工工况影响,本文将摊铺温度分为下卧层温度与摊铺时混合料温度来进行讨论,通过层间粘结性能确定合理的下卧层温度为(40±10)℃,基于ANSYSFluent瞬态仿真摊铺温度衰减模型,确定低温条件下SBS改性沥青混合料的摊铺温度为170℃。
低温条件下路面施工质量控制不当通常会造成沥青老化、温度离析、压实不足以及层间粘结性能差等情况,从而导致路面在早期出现块状裂缝、纵向裂缝和横向裂缝、车辙、波浪拥包、坑槽与松散等病害。部分病害如车辙与纵、横向裂缝等,往往在正常施工路面通车3~5年后才会大量出现。为了控制低温施工路面质量,本文确定了竣工验收阶段的低温路面施工质量评价指标。指标分为两级,一级指标为路面压实度代表值及压实度合格率;二级指标为温度离析程度、层间抗剪强度、压密型车辙深度指数和施工缝处横向裂缝等效面积。
通过对低温条件下SBS改性沥青混合料施工温度进行研究,从而确定合理的拌和、摊铺及成型温度范围,能够有效提高低温条件下路面施工质量。
1.拌和温度。通过和易性试验确定SBS改性沥青混合料的暂定拌和温度。由于低温施工条件对施工温度的控制要求很高,合理的拌和温度在起到让胶结料与矿料充分结合的同时,也为后续的摊铺压实环节提供温度保障,所以需要对拌和温度范围进行修正,使之适用于低温施工工况。通过室内模拟试验与运输仿真模型计算,结果表明:180℃为拌和温度的安全上限,170℃为拌和温度下限。
2.成型温度。和易性试验所确定的狭窄成型温度范围不利于指导施工。通过在低温条件下进行控制初压温度的马歇尔成型试验与轮碾成型试验,分析混合料体积参数、高低温性能与力学性能等指标与温度的关系,从而确定低温条件下SBS改性沥青混合料合理的初压温度范围,并确定最低容许成型后表面温度,再通过旋转压实试验进行验证。结果表明:初压温度范围为150℃~170℃,成型后表面温度应大于115℃。
3.摊铺温度。为应对低温施工工况影响,本文将摊铺温度分为下卧层温度与摊铺时混合料温度来进行讨论,通过层间粘结性能确定合理的下卧层温度为(40±10)℃,基于ANSYSFluent瞬态仿真摊铺温度衰减模型,确定低温条件下SBS改性沥青混合料的摊铺温度为170℃。