过渡金属掺杂的石墨烯铜基复合材料第一性原理计算及性能研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:sunrain0428
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为航空航天、新能源汽车等领域电接触部位的关键材料,石墨烯铜基复合材料的研究是目前科研工作者的研究热点之一。但实际制备及应用过程中仍然存在石墨烯难以有效分散与铜碳界面结合差的难题,且国内外对于石墨烯铜基复合材料强化机制和抗磨机理仍缺乏深入研究,同时对于第一性原理在石墨烯铜基复合材料的应用鲜有研究。为了克服现有石墨烯铜基复合材料因自身缺陷导致材料力学和摩擦学性能无法大幅度提升的问题,本文基于过渡金属与石墨烯较强的亲和力的特点,开展了对过渡金属原子与石墨烯之间的第一性原理计算、过渡金属掺杂石墨烯纳米片铜基复合材料的制备、复合材料性能研究、强化机制及抗磨机理研究,主要研究内容如下:(1)运用第一性原理计算钛(Ti)、钴(Co)、镍(Ni)在石墨烯表面不同吸附位的吸附能及电子结合情况。结果表明,Ti、Co、Ni与石墨烯C原子间吸附作用大小依次为Ti-C>Co-C>Ni-C,钴是三种过渡金属中最为理想的掺杂物。构建了Co掺杂石墨烯铜基复合材料的界面模型,并对界面处电子态密度进行计算。结果表明,Co掺杂的复合材料界面原子电子态密度在费米能级附近高于未掺杂石墨烯铜基复合材料界面,从而增强了界面的结合强度。(2)系统对比了不同过渡金属含量掺杂的石墨烯铜基复合材料性能的影响规律。研究发现随着过渡金属含量的增加,电学及热学性能呈下降趋势;复力学及摩擦学性能呈现先升高后下降的趋势,其中0.25%过渡金属添加量、0.2%GNPs添加量复合材料性能最佳。不同过渡金属中Co掺杂复合材料性能表现最为优异,其中Cu+0.2GNPs+0.25Co的维氏硬度为83.9 HV,弹性模量为232.58 GPa,压缩强度为505.66MPa,较纯铜材料分别提高了55.3%、154.3%和37.6%。Cu+0.2GNPs+0.25Co材料摩擦系数为0.192,相比较纯铜的摩擦系数(0.64)显著降低。(3)结合多种表征手段,从材料微观结构、宏观性能等方面深入分析过渡金属掺杂石墨烯铜基复合材料的力学强化机制,并研究了过渡金属掺杂石墨烯铜基复合材料抗磨机理。结果表明,力学性能的提升归因于细晶强化和位错强化;抗磨性能提高归因于过渡金属与石墨烯协同增强,石墨烯层间滑移为复合材料持续提供稳定的石墨烯润滑膜,保持相对稳定的低摩擦系数。
其他文献
近年来,随着化石能源的减少与环境污染的加重,以氢气为主要能源载体的氢经济能源转换方式引起了人们广泛的关注,其具有清洁且高效的优点,发展前景广阔。目前,电解水制氢和燃料电池设备分别被认为是氢气的产生和利用中最清洁且有效的方式,但它们的效率仍有待提高。寻找廉价且高效的催化剂是这两种设备发展的关键所在。而我们的工作就主要集中于此类氢经济催化剂的设计与研究中。调研发现,二硫化钼(MoS_2)材料在多种溶液
滚动轴承是机械传动系统中支撑旋转件、承受负载、减少摩擦损耗的关键零部件。滚动轴承经常处于高速或重载的严苛工作条件,大量摩擦生热和积累会导致轴承温度过高,使得轴承寿命大大降低,进而严重影响机械设备的正常运转。油气润滑具有精确控制油气参数、润滑冷却效率较高、耗油量低等优势,能够显著降低轴承温升,提高轴承寿命。工程应用中对轴承寿命特别关注,然而轴承寿命影响因素较多,分析评估困难。基于此,本文以油气润滑角
钛合金磨削过程中产生的高温易使工件表面出现磨削烧伤,降低工件耐磨性、耐腐蚀性和疲劳强度等,严重影响工件的使用性能。为保障工件加工质量、提高工件生产效率,生产上急需一种高效的磨削烧伤识别方法。基于深度学习的钛合金磨削烧伤图像识别方法可以减少图像预处理流程,避免手工特征提取,提高烧伤识别准确率,实现磨削烧伤的无损快速检测。本文基于深度学习理论,以TC4钛合金为研究对象,针对磨削烧伤的图像识别进行深入研
铝及铝合金具有密度低、强度高、导热性好等优点,其微结构在微机电系统(MEMS)领域被广泛的应用。然而,由于铝的硬度较低,机械加工时容易变形,很难达到铝微结构的加工尺寸和精度。而微细电火花加工、激光加工等非接触加工方法存在加工表面质量较差,效率较低等缺点。本文采用微尺度线状工具,分别开展了铝微缝结构的微细电解切割加工、微细电解电火花复合切割加工以及钨丝切割加工试验研究。主要研究内容如下:(1)提出一
系统安全性分析是飞机系统开发过程中提高系统安全性水平的主要手段,是保障飞机系统使用效能的重要方法。传统安全性分析方法,如故障树分析、故障模式及影响分析等通常是高度主观并依赖于安全分析人员的经验。因此,本文针对飞行控制系统研究了一种基于模型的安全性评估分析(MBSA)方法,提出了多种飞行控制系统安全性评估方法及流程,主要的研究内容包括:一、针对飞行控制系统组成部件的数学模型以及飞机的动力学模型,建立
近年来,廉价、易得、结构易调变且能满足工业生产需求的Cu基催化剂已被广泛应用于合成气(CO+H_2)转化生成C_2氧化物(尤其是乙醇)反应。目前,对于Cu0和Cu+活性位上合成气转化反应中的作用已经有了明确认识,但是,Cuδ+(0<δ<1)活性位在催化合成气转化生成C_2氧化物中作用机制尚不清楚。同时,Cu基催化剂上合成气合成乙醇反应机理已明确,包含两个关键步骤,一是CO活化转化形成C
日益增长的民航旅客数量同目前航空运输企业的运营能力和管理协调能力之间的矛盾,导致了旅客延误问题愈加严重。旅客延误引发的旅客滞留不仅导致旅客满意度的下降,还给航空运输企业造成了巨大压力。因此,如何有效地站在旅客角度评估我国民航运输的旅客延误问题并对其加以改善,对于民航运输业的发展有着重要意义。本文以民航运输中的旅客为核心,开展了旅客延误评估与行程优化方法研究。首先总结了国内外旅客延误的研究现状,对现
作为一类新兴的碳纳米发光材料,碳量子点(CQDs)因具有极佳的分散性、可见光吸收能力、光诱导电荷转移等特点引起了研究者们的极大兴趣。在光催化过程中,碳量子点往往表现出较好的催化活性。然而,CQDs优异的分散性使其很难被分离和回收再利用。因此,设计一种多功能的碳量子点使其同时兼具高催化活性和快速分离特征具有十分重要的意义。此外,二维层状卤氧化铋因具有合适的能带结构、稳定的光吸收等特点在光催化领域呈现
根据麦克斯韦电磁力公式,磁轴承承载力与气隙中磁感应强度的平方成正比。根据硅钢片材料的磁化曲线,当超过1.2T时,磁感应强度逐渐趋近于饱和。本文提出磁轴承的非对称差动控制策略,研究BP神经网络控制算法,通过大幅度提高最大磁感应强度设计值,显著提高磁轴承的比承载力。搭建磁悬浮飞轮转子系统试验台,对系统进行理论模态分析,得到了系统的各阶模态参数。通过仿真分析得到了磁感应强度在线性段和“欠饱和段”时的分布
随着当前工业文明的不断进步与发展,能源危机和环境污染是人类面临着的亟需解决的重要问题。光催化以清洁无污染的太阳能能源为基础,实现了光能向化学能稳定高效地转换,为解决这一问题提供了可行性的思路。当前,利用可见光来驱动光化学反应已取得了越来越广泛的研究进展。然而,传统的半导体光催化剂普遍存在可见光吸收范围较窄,电荷分离和转移效率偏低等问题。单原子催化剂由于其可以最大化利用金属原子以及带来更高的选择性和