碳纳米材料诱发炎症反应并导致机体损伤的毒性通路研究

来源 :中国科学院大学 | 被引量 : 0次 | 上传用户:qwe8056
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着纳米产业的发展,纳米材料在原材料加工、消费品生成及消费品使用的过程中,不可避免的会进入到环境中,并可能造成人群暴露。碳纳米材料,如一维的碳纳米管、二维的石墨烯、三维的富勒烯,以及其它衍生物,因优良的物理化学性质,在生产、生活中得到广泛应用,尤其是在生物医疗领域的应用潜能及优越性日益突出。因此,探究碳纳米材料生物安全性及潜在的环境及健康风险也越来越重要。尽管目前关于碳纳米管生物效应的研究很多,但是大部分工作集中在探究碳纳米材料暴露后对暴露部位细胞、组织、器官的直接毒性效应,很少有研究工作关注伴随着炎症反应状态改变产生的继发性或者代偿性效应。对于碳纳米材料暴露诱发的“有害结局路径”也称为“毒性通路”(Adverse outcome pathways,AOP)并没有明确的认识,实用的针对碳纳米材料风险评估的框架并没有建立。  机体的免疫系统是监控、清除入侵机体的外源物质的第一道防线,免疫状态的改变会影响机体其他代谢过程及内稳态,探究纳米材料的免疫毒性机制,识别机体以免疫状态改变为起始事件的毒性通路,及其相关的间接性及代偿性效应对于更全面、深入的理解纳米材料组织、细胞相容性,揭示其生物安全性具有重要意义。探究材料本身理化性质对于生物相容性及毒性效应的影响,对于进一步基于构效关系进行纳米材料的修饰、改性,拓展其在生物医药以及环境污染控制方面的应用也具有一定的指导意义。  本论文主要探讨碳纳米管暴露诱发周身炎症反应的间接毒性效应及氧化石墨烯活化炎症反应的理化性质决定机制。采用了原始态(P-MWCNTs),氨基化(MWCNTs-NH2)、聚乙二醇化(MWCNTs-PEG)、聚醚酰亚胺化(MWCNTs-PEI)和羧基化(MWCNTs-COOH)多壁碳纳米管模拟真实环境中的人群暴露方式及暴露剂量进行实验研究。我们发现,原始态及功能化修饰的碳纳米管(CNTs)均能诱发促炎症反应并不同程度的改变机体的铁代谢稳态。表现为:不管是什么修饰类型的CNTs并以何种方式暴露(腹腔暴露或者肺暴露),均能检测到实验小鼠发生明显的炎症反应及机体铁代谢紊乱。从整体上考虑表面修饰对这些生物效应的影响,我们发现原始态的碳纳米管对炎症反应状态及铁稳态的扰动作用最强,而PEG和COOH的引入会部分减弱这种效应,而NH2则可以进一步加剧CNTs的促炎症反应。进一步的机制研究表明:碳纳米管能显著活化炎性细胞(如巨噬细胞)发生促炎症反应,并在暴露部位招募炎性细胞促进炎症反应的级联放大,导致以肝脏hepcidin为核心的铁代谢紊乱,红细胞的合成发生障碍,脾脏内造血的代偿性增加,最终导致炎症性贫血的发生。与此同时,我们还发现碳纳米管暴露后对机体远端组织-关节存在潜在的健康风险。选择相较于其他修饰类型诱发炎症反应较为温和的羧基化碳纳米管(MWCNTs-COOH)进行机制探索发现:经碳纳米管暴露后小鼠关节部位出现以滑膜增厚、炎性细胞浸润为特征的滑膜炎症反应。进一步的机制探究说明:MWCNTs-COOH能直接活化巨噬细胞表达促炎症因子,利用巨噬细胞炎性上清孵育滑膜/软骨细胞后,可明显检测到与软骨降解相关的基质金属蛋白酶(MMPs)以及与炎症反应相关的环氧合酶(COXs)的表达量及活性增加。将MWCNTs-COOH暴露巨噬细胞得到的炎性上清进行抗体中和后再暴露细胞发现其MMPs及COXs的表达量降低。说明碳纳米管暴露可能使得机体的免疫敏感性增加,患免疫相关疾病的风险增加。  氧化石墨烯(GO)因其独特的理化性质(表面积大,稳定性高)以及在水溶液中的亲水性及可分散性,在生物医药领域得到广泛应用。但是,由于GO的理化性质差异较大,对于其生物相容性及生物安全性的认识充满争议。对材料自身的理化性质,如水平尺寸,在GO的生物学效应及毒性效应中的影响尚不清楚。在这部分工作中,我们重点关注GO水平尺寸对其生物效应的影响。我们利用相同的原始材料,制备得到以水平尺寸为单一变量的一组GO样品,模拟真实环境中人群接触碳纳米材料的途径(呼吸暴露、经腹腔的内暴露及经尾静脉的血液暴露)进行体内实验,我们发现,不同尺寸GO在激活巨噬细胞和诱发局部与系统性炎症反应方面存在很大差异:与小尺寸的GO相比,大尺寸的GO更易活化巨噬细胞并促发炎症反应。一系列的细胞与分子生物学研究表明:相较于尺寸较小的GO,大尺寸材料更倾向结合于巨噬细胞的细胞膜表面,与膜的相互作用更强。进一步的机制研究揭示,不同大小的GO在不同程度上激活位于细胞膜表面的Toll样受体,并差异活化其介导的下游NF-κB炎症反应信号通路。同时发现大尺寸的GO显著刺激巨噬细胞向M1亚型极化,放大炎性级联反应。  这些发现对于揭示纳米材料的潜在毒性效应,深入理解纳米材料的健康风险及生物安全性具有重要价值。
其他文献
心理资本是个体在发展和成长过程中所表现出来一种积极心理状态.在新形势下开发大学生心理资源,能进一步提高学生的学习效率,促使学生心理健康发展,同时还助于提高学生就业能
沉积有机质(SOM)和孢粉是天然有机质的重要组成部分。天然有机质的吸附作用是控制疏水性有机污染物(HOCs)在环境中的分布、迁移和归宿的重要因素。由于天然有机质高度异质性和HOCs理化性质的差异,所以,到目前为止,天然有机质对HOCs的吸附机理尚不清楚,因此,研究有机质的各种性质(例如:芳香性和脂肪性;极性和非极性;微孔等)以及有机污染物和沉积有机质分子间的作用机理(疏水作用、微孔填充、π-π电子
一、教学背景rn本课例是2019年7月16日至19日在江西省南昌市由中国教育学会外语教学专业委员主办的“第十六届全国骨干英语教师高级研修班”的现场展示课例,授课教师为江苏省
期刊
随着天然气在能源消费结构比例中不断加大,加上这两年“煤改气”政策的推行,城市燃气行业已经越来越成为关系百姓生活和地方经济发展的重要行业.搜索城市燃气企业,我们可以发
期刊
通过在人类文化知识与学生生活体验之间形成有机联系,想要去实现高效并追求个性的课堂,如何切实提高课堂教学的效率,需要全面提高学生的综合素质,以此为突破口努力提高学校的整体
期刊
甲烷氧化菌本身固有的酶系具有转化甲烷,生成甲醇、甲醛、甲酸等一系列碳—化合物的功能。本文深入系统地研究了甲烷氧化菌转化甲烷使其羟基化的过程。 作者从河道淤泥中筛
一、教学背(一)教学内本堂课是语法课,教学内容为人教版新目标(Go for it!)《英语》八年级(上)Unit 6 Im going to study computer science Grammar Focus.Grammar Focus的表
期刊
随着时代的发展,社会各方面对高性能材料的需求越来越广泛,单纯的金属或合金在很多应用领域已经无法满足力学性能方面的要求。由于拥有高比强度、高比刚度、耐高温和耐腐蚀性能
生物碳泵效应是喀斯特地表水生生态系统的重要碳汇机制,对全球碳循环的研究具有重要意义。传统认为,硅酸盐风化碳汇是主要的陆地风化碳汇,碳酸盐风化在长时间尺度上没有碳汇。最
随着纳米科技的快速发展,纳米TiO光催化材料在降解有机污染物、保洁抗菌、处理有害气体等方面表现出了更加独特的优异性能,成为目前最引人注目的环境净化材料.该文在总结光催