论文部分内容阅读
土壤是一个巨大的碳库,总储存量达到1394PgC,土壤呼吸占整个陆地生态系统呼吸的600%-90%,其微小的变化都可能引起大气CO2浓度较大的改变,是导致全球气候变化的关键过程。森林是陆地生态系统的主体,其土壤中的碳贮量占全球土壤碳库的73%。故探索森林土壤呼吸的监测手段和评价方法,不仅对于碳汇计量、碳交易、缓解气候变化具有重要的战略意义,而且对森林碳储量的经营管理具有重要的指导价值。论文首先研究土壤呼吸监测平台,然后研究土壤温度空间分布,以土壤温度指导监测点布置理论,并把土壤温度作为软数据结合贝叶斯最大熵方法提高土壤呼吸预测的可靠性,最后研发土壤呼吸分析与评价软件,为研究者分析与评价土壤呼吸提供便利的方法。本论文主要形成以下结论:(1)研究了基于气体扩散定律的土壤呼吸仪,在仪器内设置多层传感器采集数据,建立CO2在仪器内的扩散模型计算得到土壤碳通量值,此土壤呼吸监测仪平均误差为10%左右。然后通过AD-HOC与GPRS无线通信技术,组建土壤呼吸分布式监测网络,实现多点、同时监测。研究表明在实验区域内仅用一个采样点进行土壤呼吸监测平均误差为42%左右,说明单一点监测会产生较大误差,用分布式监测网络可以减小监测误差。(2)研究了基于BP神经网络的土壤温度空间分布方法。针对土壤温度分布具有不确定性和非线性等特征,提出分组训练、组合优化的改进BP神经网络算法,此算法隐含层节点数量设为10,学习率设为0.75,算法达到较好的性能。并以真实值与预测值进行对比,用R2作为评价标准,样条插值算法,克里金算法,BP神经网络算法的R2分别为0.59,0.73和0.92,而改进BP神经网络算法R2为0.97,说明此算法能有效提高土壤温度空间分布的可靠性。(3)研究了基于土壤温度梯度与图像分割算法的土壤呼吸监测点优化布置方法,以土壤温度为依据,确定实验区土壤呼吸监测点数量设置5个比较合理,并利用区域生长图像分割算法,确定这5个监测点位置。然后以平均误差率为评价标准,均匀网格法确定位置和随机布置方法确定位置的平均误差分别为24%和29%,而以区域生长图像分割算法平均误差为15%,说明此方法能提高土壤呼吸监测点布置的合理性。(4)研究了以土壤温度为辅助信息的贝叶斯最大熵算法,利用土壤温度和土壤呼吸之间的函数关系,把土壤温度作为软数据融入到土壤呼吸估计中,可以提高土壤呼吸空间插值算法的准确性。贝叶斯最大熵算法(BME)的平均CR为0.745,明显高于协同克里金算法(Co-OK)方法的0.505以及普通克里金算法(OK)方法的0.267;BME的平均RMSE结果为0.568,均低于Co-OK方法的0.851以及OK方法的1.511;BME方法的Bias绝对值平均值为0.192,相比较Co-OK方法的0.508以及OK方法的1.143,实验表明BME方法的性能比Co-OK方法和OK方法好。同时,利用BME算法还能减少监测点数量。(5)利用SQL Server数据库存储传感器数据,利用ArcGIS建立土壤呼吸相关图层,利用Visual Studio 2008研发土壤呼吸分析与评价软件,为用户进行土壤呼吸研究提供便利。研究结果为监测与评价森林土壤呼吸提供一套优化的方法,为进一步研究土壤碳的动态变化以及指导碳汇林和森林资源的经营管理作必要的技术支撑。