液态金属改性铝的制备及其在典型复合含能材料中的应用

来源 :西南科技大学 | 被引量 : 0次 | 上传用户:xqm009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于Al粉具有较高的能量密度,被广泛用于复合含能材料体系中。然而,Al颗粒表面存在的完整钝化层(Al2O3)会降低其反应性,并使内部的Al核难以完全反应。为了提升铝的反应性,本论文提出了一种基于液态金属“一步”改性微米铝粉方法,用于制备改性铝(GLM-Al)。旨在通过破坏铝颗粒表面完整的Al2O3壳,从而促使铝核快速释放并参与反应。本文的研究内容如下:1)液态金属改性铝的制备及其热性能研究以25μm铝粉为原料,自制四种液态金属Galinstan加入比例(1 wt%、3 wt%、5wt%、7 wt%)的改性铝。通过DSC-TG探究改性铝在空气中的氧化增重性能。研究结果表明:液态金属加入量为3 wt%时,改性铝的氧化增重性能最优。当在空气气氛中GLM-Al(3%)单独作为燃料时,增重率和最大增重速率分别是对照组的7倍和9倍。2)液态金属改性铝在铝热剂中的应用研究以改性铝为燃料,纳米氧化铁为氧化剂,制备不同化学计量比(φ=1.1、1.3、1.5、1.7、2.0)的微米铝热剂。通过DSC探究不同化学计量比的铝热剂的热性能,通过真密度测试仪测试样品真密度,并计算体积能量密度,通过静电火花感度测试仪测试所得样品的ESD感度,通过激光点火测试所得铝热剂的非接触点火性能。研究结果表明:化学计量比为1.3时,GLM-Al@Fe2O3的质量能量密度和体积能量密度分别是对照组的1.7倍和1.5倍,起始反应温度较对照组降低300 oC,激光点火所需的能量为对照组的50%。3)液态金属改性铝在固体复合推进剂中的应用研究以改性铝为燃料,AP为氧化剂,HTPB为粘结剂,制备固体复合推进剂。通过DSC评估推进剂热性能,通过密闭爆发器测试推进剂在1 MPa氩气气氛下的燃烧性能,通过SEM评估推进剂燃烧凝聚相产物形貌。研究结果表明:含有改性铝的固体复合推进剂的热释放是对照组的1.4倍,增压是对照组的1.4倍,平均增压速率和最大增压速率分别是对照组的2.08倍和1.75倍,且凝聚相产物也较小。
其他文献
炸药的外观形貌、尺寸大小、团聚状态等晶体形态不仅会影响炸药的宏观力学性能,同时还会影响其感度和起爆性能等。实现对炸药晶体形态的有效调控有望改善其能量、安全性、力学性能等综合性能,具有重要的应用意义,是目前钝感高能炸药的研究热点。作为目前唯一满足钝感高能炸药标准的单质炸药,1,3,5-三氨基-2,4,6-三硝基苯(TATB)因其具有较高的能量密度、极好的安全性能,在军事领域和民用领域均具有重要的应用
学位
硼(B)具有较高的能量密度,在固体推进剂、炸药和烟火剂中具有广泛的应用前景。然而B表面的惰性氧化层(B2O3),导致点火延迟时间长和燃烧效率低等问题。为此,本文主要采用表面功能化技术,选用高活性的纳米铝(nano-Al)和氟化石墨烯(FG)对B粉表面功能化包覆,以改善B粉的点火和燃烧性能。系统研究了表面功能化B粉和硝酸钾(KNO3)、氟化石墨(GF)两种氧化剂的点火和燃烧性能。在此基础上,基于B粉
学位
碳球因其独特的封装性能,比表面积大、密度低、化学稳定、导电性和生物相容性良好等特点,不仅在吸附、催化、生物医药和电极电容材料等通用领域具有广阔的应用前景,而且在激光惯性约束聚变(ICF)、实验室天体物理和强场物理等极端条件实验研究中可作为氘氚燃料的容器,这使得碳球的研制成为焦点。不同应用领域对碳球尺寸与形貌要求不尽相同。如在锂硫电池中,提高多孔碳球的单分散性与结晶度可以增大电池容量,从而提高阳极材
学位
富锂锰基正极材料因其成本低、放电容量高的突出特点成为高能量密度理想材料之一。然而,电压衰减快、结构稳定性差给这类材料的实际应用带来较大的困难,成为富锂锰基正极材料商业化最大的阻碍。而通过离子掺杂和表面包覆这两种改性方式可以在很大程度上克服上述缺陷。基于此,本文以富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2为研究对象,分别采用Ce掺杂+Nb2O5包覆、Al Zr O3.5包覆的
学位
近年来,不断增长的能源消耗和日益严重的环境问题引起了广泛的关注,而热电材料由于能够实现热能与电能之间的直接转换迅速成为研究热点之一。通常,材料的热电性能以无量纲的热电优值(ZT=S~2σT/κ)来评价,其中S为Seebeck系数,σ为电导率,κ为热导率,T为热力学温度。ZT值越高,相应材料的热电转换效率也越大,目前大多数研究集中在如何优化其ZT值上,然而影响ZT值的三个参数相互耦合在一起,这给相关
学位
化石能源的过度消耗使大气中CO2的浓度持续升高,已经导致温室效应等一系列问题。电催化还原CO2为CO既能解决CO2浓度过高问题,又能为许多反应提供原料,因此具有广阔的应用前景。过渡金属单原子锚定于氮掺杂碳基底(CN-M)由于高的原子利用率与独特的电子结构在CO2还原为CO领域已经被广泛研究。然而,CN-M催化剂目前存在制备过程中金属原子易迁移形成团簇,制备工艺复杂,活性位点暴露不充分的问题。因此本
学位
针对核事故放射性废液中裂变产物(Sr)、镧系核素(La→Dy)和锕系核素(Am、Cm)分离效率低、二次废物量大、成本高等问题,本研究选用对锕系核素选择性高、载荷量大,且化学稳定性优异的水磷镧石(LaPO4·0.667H2O)作为沉淀-富集材料,系统研究了LaPO4·0.667H2O的制备技术、模拟锕系核素/裂变产物(Sr)在LaPO4·0.667H2O中的赋存状态及其固溶体的长期化学稳定性等关键科
学位
直接醇类燃料电池(DAFC)因其效率高、燃料范围广、对环境影响小,甚至没有影响等优点广泛应用于便携电子设备、公共交通以及发电站等方面。以甲醇燃料电池为例,阳极以甲醇作为燃料,发生燃料氧化反应,阴极以氧气为氧化剂,发生氧气还原反应。在燃料电池电极反应中起重要作用的是催化层,因此制备高活性、高稳定的催化剂至关重要。碳气凝胶作为一种多孔、轻质的块体碳材料,因其比表面积较高,孔结构丰富、导电率较高、耐酸抗
学位
人类对能源需求的日益增长使得核能得到了迅速的发展,但是伴随而来的核污染严重影响到了生态环境以及人类的生命安全。其中以铀(U(Ⅵ))为主的放射性核污染物往往存在于受污染的地下水中,造成了很严重的环境问题。因此,高效地去除水中的U(Ⅵ)成为了当今热点。在常用到的含U(Ⅵ)废水的处理技术中,吸附法因其操作简单、具有一定经济效益,且吸附剂种类多、来源广泛等优势而被广泛应用。在已有的吸附剂材料中,氧化镁具有
学位
N5负离子含能材料已成为含能材料研究的热点之一。作为新型N5负离子含能材料的基础原料,五唑金属盐的合成还存在分离纯化困难、成本高、产率低、难以放大等问题,有待深入研究。本论文对五唑金属盐合成工艺优化和放大,五唑金属盐分离纯化方法,以及五唑非金属盐合成等进行了研究。(1)五唑钠(4)合成工艺优化及放大以2,6-二甲基苯酚(1)为原料,通过偶氮或亚硝基还原法对4-氨-2,6-二甲基基苯酚(2)进行了合
学位