利用纳米颗粒铜膜提高介质/金属/介质多层膜光电性能的研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:ningsha
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
介质/金属/介质多层膜(DMD)光电性能较好,制备过程简单不会造成污染,具有较好的透光性能和导电性能,而且相较于ITO薄膜,可以应用于柔性电子器件领域。进一步提高DMD多层膜的光透过率和导电性能具有一定意义。本课题的主要目的是探究如何利用纳米颗粒铜膜提高DMD多层膜光电性能。围绕这个目的,进行了以下工作:首先我们要对纳米Cu颗粒膜的特性进行研究;我们探究了纳米Cu颗粒膜的等离激元共振效应以及氧化规律,使用真空蒸发镀膜方法制备了纳米铜颗粒膜,并在氮气及氧气氛围下对纳米铜颗粒膜进行高温退火,然后通过紫外-可见吸收光谱、XPS、SEM及Laman光谱仪,研究了样品的吸收谱变化、表面形貌、成分比例和样品拉曼增强效果,分析了样品的结构、成分以及退火过程的影响。研究发现氮气退火可以使CuNPs产生较为明显的吸收峰(600nm-700nm),通过SEM、XPS及Laman光谱仪表征确定该峰为Cu膜的等离激元共振峰,当Cu膜的等离激元共振峰位与拉曼激光波长一致时,显示出了较强的表面增强拉曼散射现象。该峰来源于退火Cu膜表面的CuNPs@Cu2O核壳结构,使Cu膜具有较强的拉曼增强效果,同时低温低氧环境下,Cu的氧化产物倾向于Cu2O;高温高氧环境下,Cu的氧化产物倾向于CuO。在纳米Cu颗粒膜的研究基础上,我们使用Cu预沉积层以及提高Ag膜沉积速率的方法对TAT三层膜进行了优化,所制备的30nm TiO2|0.1nm/s-0.5nm Cu|0.2nm/s-7.8nm Ag|30nm TiO2,光电性能优越,370到800nm的平均透射率达到92%,方块电阻低至6.3Ω/sq,且在六个月时间内,样品光电性能没有明显劣化。结果表明,使用纳米铜作为预沉积层可以明显提高TAT透明导电薄膜的导电性和光透过率,提高TAT在光电显示领域的应用潜力。通过SEM对样品的表面结构进行了分析,Cu预沉积层以及提高Ag膜沉积速率可以提高Ag膜表面质量,大幅度提高Ag膜表面连续性;从而提升了TCAT多层膜光电性能。本研究对理解纳米Cu颗粒加热氧化过程以及等离激元共振特性有重要的意义,同时促进了DMD多层膜在光电领域的应用。
其他文献
近年来随着“一带一路”建设的不断推进,我国的铁路运输事业快速发展。连续钢桁梁桥结构技术成熟,竖向和横向刚度大且具有较强的跨越能力,被广泛应用于我国的铁路桥梁建设。大跨度连续钢桁梁桥通常采用悬臂拼装法架设,其施工过程存在结构体系转换和桥梁合龙的关键技术问题。当桥梁跨径较大时,可通过在跨间设置辅助结构临时墩,以减小施工过程中桥梁的最大悬臂架设长度,具有控制杆件安装应力,提高其倾覆稳定性的作用。在深沟峡
迄今为止,基于MEMS技术的微机械谐振式加速度计已得到战略级应用(惯性导航与制导)。谐振式加速度计可将加速度信号直接转换为频率的变化量,通过简化数字电路和消除模拟信号的干扰来提高输出精度以及可靠性。但随着谐振式加速度计在惯性导航与制导的应用越来越广泛,现有的谐振式加速度计的精度以及性能已经无法满足需求,难以应用于高精度制导和空中姿态微调,因此,亟需高精度的谐振式加速度计。近几年来,新型纳米材料已开
据医学研究表明,当今世界每年死于心脑血管疾病的人数高达1500万人,居各种死因首位。心脑血管疾病具有高患病率、高致残率和高死亡率等特点,患病者通常表现为心动过缓、心率失常和心脏阻滞等,部分严重患者需要植入心脏起搏器以确保正常的心率从而缓解疾病。心脏起搏器作为现代治疗心血管疾病的主要手段,由于其存在的重要地位,为安全考虑,医学人员对其工作状态的实时检测十分关注。传统检测方法是利用心电图机实时观察人体
近年来,随着全球现代工农业的快速发展,导致挥发性有机物(Volatile organic compounds,VOCs)排放量与日俱增,不仅危害人类的身体健康,还严重威胁了地球上其他生物的生存,从而引起了社会的高度关注。本文以合成针铁矿为载体,分别负载CuO和ZnO金属氧化物制备CuO/α-Fe2O3和ZnO/α-Fe2O3复合催化剂,再另外以γ-Al2O3为载体,负载α-Fe203制备γ-Al2
近年来,人工洗砂成为建筑用砂的主要来源,洗砂尾矿堆积、占用土地资源、易坍塌造成泥浆横流,危害生态环境等一系列问题也随之出现,因此合理处理洗砂尾矿迫在眉睫。湖南汨罗市采用风化花岗岩作为砂源的洗砂尾矿中主要成分为高岭石,且高岭石中的Si O2:Al2O3(摩尔比)与4A沸石相同,因此合成4A沸石时不需要添加额外的铝源和硅源。本研究首先通过响应面法对洗砂尾矿合成4A沸石的参数进行优化,并在此基础上,利用
超表面是一种由亚波长共振单元以周期或非周期的方式排列组成的平面阵列结构,它可以通过改变共振单元的几何形状来控制入射光的相位、振幅和偏振,实现奇异的电磁特性。最近几年,学者们进一步地研究出了可调超表面,克服了无源超表面只能实现单一功能这一问题,为其实际应用打下坚实基础。在各式的调制方法中我们选择了电压和热调控,本文使用有限元法,开展基于氧化物薄膜(ITO、VO2)主动调控超表面的研究。具体研究成果如
为解决农田周边地下水硝酸盐污染问题及其对地下水水源地产生的威胁,寻求施工工艺相对简单、修复效果佳、适用范围广的原位修复介质与技术,本文从取水构筑物角度,构建了单井布局形式和不同复合井结构的室内物理模型,探究井类型对生物反硝化性能的影响。单井布局形式包括水平井、倾斜井和竖直井,通过开展不同水力负荷的多组试验方案,测得三种单井形式的水力负荷分别介于1.04~1.56、1.56~2.08、2.08~2.
根据本课题组对宿州矿区研究及国内外地下水污染研究现状,目前该矿区地下水面临较严重的重金属、有机物、无机物造成的混合污染。针对该类混合污染,鲜见有关于能够对其进行高效稳定去除且处理成本低廉的地下水原位修复方法的报道。因此,寻求高效稳定去除且成本相对低廉的地下水混合污染的方法迫在眉睫。为此,本文选择煤矿区典型的Cr(Ⅵ)和NO3-N作为混合污染去除指标,针对如何稳定且高效地去除地下水含水层中Cr(Ⅵ)
在煤炭开采过程中,地下水体常常通过各种水力通道涌入采空区,从而引发严重的突水事故,导致生命财产的损失。采动会诱发采空区围岩的破断,岩层中相互联系的裂隙网络构成了地下水的主要通道。因此,从岩石损伤断裂机制着手建立围岩采动破坏范围的预测模型对保障煤矿安全开采具有重要的理论和现实意义。本文以淮北煤田为典型研究区,主要从以下三个方面探究煤矿开采中围岩的损伤断裂效应。首先,针对淮北煤田区域内广泛分布的灰岩地
参数化技术的强大逻辑运算与数字图形演化能力,为传统的产品造型设计带来新的设计来源,其自身的高效性与实时性也成为当今计算机辅助设计最广泛的技术之一。随着感性时代的价值观念与日俱增,产品中感性的传递成为影响消费者消费的重要因素,而参数化设计由于数理性而忽视而对消费者的情感考虑,因此产品参数化设计的感性表达成为目前以及未来研究的热点课题。本课题提出了基于感性工学理论的产品参数化设计的方法论,通过运用感性