集成融合代理模型在涡轮叶尖间隙设计中的应用

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:skynet0079
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
保持航空发动机涡轮叶尖间隙在合理范围值内,可以获得更好的涡轮效率和更高的燃油效率。但是由于航空发动机在复杂环境下运行,影响叶尖间隙变化的因素很多,如果要在该环境下对航空发动机进行叶尖间隙的高效准确预测和调控,传统的数值仿真方法无法实现。高效的间隙预估模型和方法,无论是对间隙控制系统的设计还是工程上间隙的调控,都是非常关键的。考虑到航空发动机叶尖间隙预测计算的复杂性,本文提出集成融合优化算法并应用到叶尖间隙预测与调控中,在保证计算精度的同时,大大提高了计算效率,为航空发动机的设计与研制提供重要支撑。本文首先依据基本的优化设计问题,利用传统SVR模型、ANN模型和GPR模型构建本文的集成融合优化算法的代理模型。对提出的集成融合优化算法代理模型进行理论分析和计算流程描述,在整个优化过程中,充分利用样本数据特点对模型的迭代算法进行了划分,可以更优地应用于航空发动机预测模型,增加整体模型的泛化能力。为了检验本文提出的集成融合代理模型的性能,同时利用4组标准计算函数对其性能进行了分析和验证。其次,为了探索其在涡轮叶尖间隙预测与快速调控方面的能力,本文利用数值计算方法对退化后涡轮部件进行计算为集成融合代理模型提供数据支撑。随后利用FOAM代理模型分别对高压涡轮部件形变预测模型和快速调控模型进行建模分析,对高压涡轮预测模型的稳态预测结果与数值计算结果进行对比,结果显示机匣的预测结果最大偏差为6.3%,叶片预测结果最大偏差为0.31%,轮盘预测模型平均偏差为1.65%;同时针对不同状态下的叶尖间隙,快速调控模型给出的调控策略可使得叶尖间隙计算结果均在0.2mm~0.5mm之间。最后,依据本文提出的高压涡轮叶尖间隙快速调控模型,针对高压涡轮机匣部件,建立机匣调控实验方案,首先验证本文的机匣部件的变形预测模型的预测精度,实验结果显示最大偏差在2.13%;并依据本文提出的调控策略,对机匣部件进行了试验验证对比,实验结果基本落在理想范围值内,最终验证本文提出的叶尖间隙快速调控模型的调控策略的合理性。
其他文献
密流比是平面叶栅叶中截面流场重要影响参数。在平面叶栅试验中,受端壁附面层影响,叶中截面密流比往往大于1。本文以某大弯角静子叶型叶栅为研究对象,构造多种端壁吸气方案,旨在通过吸除端壁附面层控制叶中截面密流比。研究结果表明:不同端壁吸气方案吸气使叶中截面总密流比为1时,叶片表面等熵马赫数分布与二维流动相差很小;但不同吸气方案密流比和出口气流角沿切向分布与二维流动差异较大。各吸气方案吸气后均对大弯角静子
学位
斜流压气机兼顾轴流式压气机大流量、高效率、小迎风面积和离心式压气机高压比、大工作范围的优点,在小推力级军用涡扇及高推重比民用/军用涡轴发动机上具有很广阔的运用前景。在斜流压气机气动设计中,转子设计主要面临叶尖相对马赫数高,叶尖泄漏流损失严重等问题。由于静子进口有较大的径向气流角,同时需要大的叶型弯角来实现较大气流转角导致载荷较大,气流在吸力面尤其是叶根处容易形成大范围流动分离,导致静子损失较大、压
学位
组合式涡轮后承力机匣是航空燃气涡轮发动机的关键结构,一般由主承力构件、形成流道的构件和其它相关功能构件等大量构件组成,采用以螺栓连接为主的、包含浮动搭接等不同形式的连接形式,结构非常复杂,动力学建模难度很大。本文主要基于超模型、连接结构建模、模型修正等理论方法,研究了某组合式涡轮后承力机匣的动力学建模方法,并进行了试验验证。取得的成果主要如下:(1)研究了组合式后承力机匣动力学建模的理论方法,主要
学位
目前受到广泛关注的一种发动机是旋转爆震发动机(简称RDE),其只要一次起爆,便可以在自身的自持性下持续运转,此外还有推重比大、结构简单、体积小和质量轻等特点,使其具有极其广泛的应用前景。但是RDE尚处于研究阶段,尚有一些问题亟待解决,其中一项是燃烧室进口存在压力反馈现象,本文采用Fluent软件对压力反馈现象进行研究,并提出减小压力反馈的方案。首先通过对带集气腔的旋转爆震燃烧室进行数值模拟,分析了
学位
离心喷嘴雾化特性直接决定了燃烧室的燃烧效率、燃烧稳定性以及燃烧室内温度分布等对燃烧室性能影响巨大的参数。扩口式离心喷嘴有着仅靠扩张段就可以实现调节雾化锥角等优点而被工程所应用,但目前国内外学者对于扩口式喷嘴雾化特性的已有研究中存在规律不一致甚至截然相反的结论。而喷嘴雾化特性又是由喷嘴内部流动特性决定的,因此本文以扩口式离心喷嘴为研究对象,结合试验、数值模拟及理论分析的方法,开展不同结构/气动参数下
学位
一体化可变涵道比风扇由前风扇和后风扇/核心驱动风扇级(CDFS)组成,其运作成功与否直接决定了变循环发动机的可行性。因此,本文以课题组自主研发CFD程序——NUAA-Turbo为工具首先开展了关闭不同进口导叶角度下的前风扇性能特性计算和某高压压缩系统及外涵道一体化计算研究,然后在CDFS进口导叶关闭0度和10度定常计算的基础上进行了非定常计算研究,最后使用Auto Blade设计CDFS涵道引射器
学位
随着计算机技术和有限元软件的发展,航空发动机中的复杂转子系统常用的研究方法是直接对复杂转子模型进行有限元仿真计算,造成有限元模型规模巨大,计算效率非常低,不便于探究一些重要参数对转子系统运动行为的影响规律。解决这一问题有效办法是先根据要研究的重要参数制定不同简化原则对模型进行合理得简化,再进行转子系统运动行为的影响规律。本文主要研究了考虑叶盘耦合效应的转子系统的动力学建模方法,并且给出了不同简化建
学位
SiC/Ti复合材料具有高比强度、高比刚度等优点,是航空发动机冷端部件的理想材料,其主要服役于复杂应力状态,易出现低应力破坏现象。揭示材料在复杂应力状态下的失效机理是实际应用的基本前提,因此本文对复杂应力状态下SiC/Ti复合材料的渐进失效行为展开研究,主要研究内容包括:(1)SiC/Ti组分性能试验利用纳米压痕技术获取SiC/Ti组分弹性模量、界面剪切强度、纤维剪切强度几类关键力学参数。(2)S
学位
针对宽域内冲压发动机进气道存在的高维流场难以快速准确预测、高性能几何构型设计中人为干预过多以及设计耗时过长等热难点问题,本文采用基于数据驱动的模态分解方法对其展开研究。首先,在参数空间,将本征正交分解(Proper Orthogonal Decomposition,POD)和插值方法相结合,开展进气道流场的快速预测研究。结果表明,该方法能准确预测样本内不同工况的流场信息,误差小于5%,耗时低于0.
学位
未来战斗机需要满足超机动、超隐身、超声速巡航及超级信息优势的4S标准,所以为满足以上要求,采用与后机身高度融合的高隐身性推力矢量技术成为必然趋势[1]。而流体矢量喷管的优势近年来被不断发掘,流体推力矢量喷管的与机械矢量喷管相比,没有复杂的机械可动部件,采用二次流来干扰主流,实现推力矢量。本课题组提出的旁路式双喉道气动矢量喷管(Bypass Dual Throat Nozzle,下文简称BDTN),
学位