FeTe超薄膜Kondo效应及氧处理研究

来源 :苏州大学 | 被引量 : 0次 | 上传用户:carlos_yu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着科学技术的飞速发展,人们对材料科学的探究也从宏观逐渐走向更小的尺度。这其中,二维薄膜材料因其许多特殊的性质引起了人们的广泛兴趣,一大批研究开始围绕二维薄膜材料展开。Fe1+yTex材料具有丰富的量子物态,仅在此材料体系中就发现了超导电性、反铁磁序、电荷密度波和二维铁磁性等物性。这为研究低维条件下不同量子物态相互关系提供了非常好的平台。在本论文中,首先使用分子束外延(MBE)技术制备了高质量层厚可控的FeTe薄膜,随后通过超高真空互联管道将所制备材料传送至相关表征设备,使得样品在传输过程中保持其本征性质。结合扫描隧道显微镜(STM)、角分辨光电子能谱(ARPES)和X射线光电子能谱(XPS)等不同的原位表征设备,获得了样品的表面形貌、电子态、能带结构等本征性质,发现了 FeTe薄膜中的近藤效应等现象。取得的具体成果如下:(1)在SrTiO3(001)(以下简称STO)表面上成功制备了高质量单个原胞厚度(1 UC)和10 UC的FeTe薄膜。STM形貌图显示薄膜均为四方结构,且原子级平整。扫描隧道谱(STS)显示了两种薄膜具有均匀的电子态,并在费米面附近呈现典型的“V”字型结构。这说明了 STO表面的FeTe薄膜呈现金属性。STO衬底对FeTe薄膜有轻微的晶格拉伸和电子掺杂作用。(2)在1 UC FeTe体系中观察到近藤效应(Kondo Effect),并发现通过Sr原子预处理STO的方法可对薄膜进一步电子掺杂,从而调控近藤效应的转变温度。STM和ARPES结果显示费米面(EF)附近存在明显的近藤共振峰,电子掺杂后的FeTe薄膜近藤温度降低。在此d电子体系中观察到近藤效应的物理机制可理解为:FeTe材料中Fe原子的局域dxy轨道可与Te的pz轨道杂化,导致共振峰的出现。(3)对10 UC FeTe薄膜进行加热氧吸附处理,在其表面发现了具有金属性金红石结构的TeO2岛。STM图显示TeO2岛呈现两种不同形貌:长条形的大岛及环绕周围的小岛。大岛表面存在两种条纹,一种为皱纹状,存在晶格扭曲,电子态呈“V”型;另一种为波纹状,不存在晶格扭曲,电子态呈“U”型。小岛则具有不同的层厚,电子态与大岛相似,且基本不随层厚的变化。本论文在成功制备了可控层厚的高质量FeTe薄膜基础上,通过原位ARPES和STM等设备详细研究了 Sr原子预处理STO衬底和O处理对FeTe薄膜的影响。在3d电子体系的FeTe薄膜中发现了近藤效应,详细研究了近藤效应的温度响应和电子掺杂调控。这为研究3d电子体系中的近藤效应提供了一个良好平台。
其他文献
本文通过调查问卷形式对502名高中生与71名高中英语教师就汉语古诗词融入长三角地区高中英语课堂的教学情况进行了调查研究。结果表明在高中英语课堂教学中融入汉语古诗词这一教学方法能够提升高中生的英语学科核心素养,且有利于培养学生独立自主判断文化价值与异同的能力,增强学生的文化自信,帮助学生树立终身学习的意识。
期刊
医疗器械相关感染(DAIs)已成为医院内感染的主要形式,严重威胁着患者的健康。构建基于高分子材料的抗菌表面是解决DAIs的一种可行的解决方案。目前,同时提高抗菌表面的防污和杀菌性能仍是巨大挑战。合成聚多肽具备仿抗菌肽(AMPs)的结构和抗菌性能、独特的二级结构,如β-折叠构象,因此在抗菌高分子材料领域备受关注。前人的研究结果表明亲水高分子材料,如聚乙二醇(PEG)具有良好的表面防污性能。环状亲水链
学位
我国是铬盐生产大国,冶金、电镀、电子、金属加工等行业均需要铬及其化合物的大量投入使用。但是最初发展时因为观念和技术的缺乏,导致了严重的Cr(Ⅵ)污染问题,Cr(Ⅵ)具有很高的生物毒性,且不能被生物完全降解,对环境污染严重。光催化还原技术具有能耗较低、无二次污染、操作安全且环境友好等特点,成为当下解决Cr(Ⅵ)污染问题最为成熟的技术之一。TiO2是最常见的过渡金属半导体,具有高电势能、抗光腐蚀性强、
学位
金属腐蚀是导致大量设备和材料失效的主要原因,它不仅局限于化学腐蚀和电化学腐蚀,在自然界中还有一类特殊的腐蚀——微生物腐蚀。这种微生物造成的腐蚀不仅使金属材料本身被破坏,还会对早期防腐涂料造成损害,从而带来更加巨大的经济损失。因此,在实际生产中有必要采取措施应对微生物腐蚀。研究发现,在环境中浮游状态微生物(Plankton)对腐蚀的影响较为微弱,而合金表面附着微生物后产生的生物膜(Biofilm)才
学位
当今世界化石燃料的耗竭及其对环境造成的不良影响已成为一个亟需解决的问题。氢能作为一种清洁能源受到了广泛关注并可作为理想的可替代能源来解决能源和环境问题。同时,太阳能作为地球上最清洁、最富裕的可再生能源在人类发展中起到了不可替代的作用。光电化学分解水能够收集太阳能并将其转化为氢能,是一种简单、高效、廉价、清洁的制氢方法,有着良好的应用前景。实现光电化学分解水需要开发高效的光电催化材料,而金属氧化物半
学位
水资源覆盖了地球表面71%的面积,分布广阔,蕴含着巨大的能量,是人们赖以生存的重要能源之一。在地球上,水能资源存在的形式多种多样,其中河流水能、潮汐水能等已得到较为充分的研究和大规模利用。然而这些形式的水能资源受到地理条件的极大限制,分布较为有限。近年来,基于电动效应理论发展出来的纳米结构材料与水的相互作用的产电模式因其能够将液滴、湿气、水蒸发等等更多水能资源的存在形式转变为电能,引起国内外研究人
学位
目前,工业生产较大程度依赖化石燃料。但化石燃料储备资源的有限性以及燃烧产物的有害性使得能源危机以及环境污染问题日益加剧。氢能被视为化石燃料的有利替代能源,然而在电解水制氢(HER)过程中又受限于催化剂的选择。研究显示,电解水制氢技术中,催化效率最高的是贵金属铂。铂的价格十分昂贵且储备资源稀少。因此,寻找价格低廉且性能高效的催化剂成为迫切需要。二维过渡金属硫族化合物(TMDCs)由于其独特的层状结构
学位
忆阻器拥有多重的阻态,在外加电压下可实现阻态的转变或保持,是用于信息存储的一类基本电子元件。忆阻器,由于尺寸小、结构简单、兼容大规模的集成工艺等优点,在存算一体与高密度电路集成等方面有着巨大的应用潜力。在微电子芯片中引入二维层状材料,保证电学性能的同时能大幅降低器件尺寸,为打破目前的摩尔定律瓶颈提供了可能。本文围绕二维材料——六方相氮化硼(h-BN)的忆阻器进行了系统的研究与分析。首先,探究了电极
学位
由于具有轻薄、响应时间快、低功耗和低热量产生等优点,有机发光二极管或称有机电致发光器件(Organic Light-Emitting Diode,OLED)已逐渐应用在可穿戴电子产品、手机、微型显示器、光动力治疗和汽车尾灯等产品。钙钛矿发光二极管(Perovskite Light-Emitting Diode,PeLED)的外量子效率也已突破20%,凭借高荧光量子产率、可调谐带隙、高色纯度和可溶液
学位
近年来,能源与环境问题日益严重,人们亟需可持续的清洁能源方案以替代现有化石能源。其中,以电能为核心的能量储存和引用引起了世界范围内的关注。因此,电化学储能和电催化是世界范围内最热门的研究领域。其中,锂金属电池作为储能器件具有极高的电池容量3860 mAh g-1和极低负极电位-3.04 V vs SHE(Standard Hydrogen Electrode)受到人们广泛关注。此外,关于电能利用也
学位